Find the period and amplitude.

A. period = 4 amplitude = 6

B. period = 4 amplitude = 2

C. period = 6 amplitude = 3/2

Graph over one period. List the amplitude, period, x-intercepts and the intervals (in the period) on which the function increases. Use the amplitude and period to get the box.

D. \(y = -\sin 2x \)
 - amplitude = 1
 - period = \(\pi \)
 - x-intercepts: 0, \(\pi/2 \), \(\pi \)
 - increases on: [\(\pi/4 \), 3\(\pi/4 \)]

E. \(y = 2\cos 2x \)
 - amplitude = 2
 - period = \(\pi \)
 - x-intercepts: \(\pi/4 \), 3\(\pi/4 \)
 - increases on: [\(\pi/2 \), \(\pi \)]

Find an equation for the graph of the form \(y = \pm A\sin(Bx) \) or \(y = \pm A\cos(Bx) \) with \(B > 0 \). 2 B's involve \(\pi \), all are fractions.

H. \(y = \frac{3}{2} \sin(3x/2) \)

Since \(\pi/3 \) is at the one quarter point, the endpoint of the period is at 4\(\pi/3 \). Thus the period \(p = 4\pi/3 \). Since \(3/2 \) is the high point, the amplitude is \(A = 3/2 \). Now \(B = 2\pi/p = 2\pi/(4\pi/3) = 2\pi(3/4\pi) = 3/2 \).

Since the graph starts at 0 and goes up, it is sin rather than cos, -sin or -cos.

I. \(y = \cos(2\pi x/5) \)
 - (5,1)

J. \(y = \pi \cos(\pi x/4) \)
 - (4, -\pi)

Note, the amplitude \(A \) is \(\pi \), not \(-\pi \). Amplitudes and periods are always positive. 4 occurs halfway through the period, hence the period is 8 and \(B = 2\pi/p = 2\pi/8 = \pi/4 \).