11. Find the exact value (no credit for a decimal).

(a) \(\cos^{-1}(-1/2) \). The answer is an angle in the second quadrant. 4 symbols

(b) \(\sin^{-1}(\sin(-5\pi/9)) \)

Warning: \(-5\pi/9\) is not correct. \(-5\pi/9\) is not in the restricted region \([-\pi/2, \pi/2]\) for the inverse of \(\sin\).
Rewrite in terms of an angle in the restricted region for \(\sin^{-1}\) before canceling the inverses. 5 symbols.

\[
\sin^{-1}(\sin(-5\pi/9)) = \sin^{-1}(\sin(\quad)) =
\]

(c) \(\cos^{-1}(\cos(-5\pi/9)) \)

Warning: \(-5\pi/9\) is not correct. \(-5\pi/9\) is not in the restricted region \([0, \pi]\) for the inverse of \(\cos\).
Rewrite in terms of an angle in the restricted region for \(\cos^{-1}\) before canceling the inverses. 4 symbols.

\[
\cos^{-1}(\cos(-5\pi/9)) = \cos^{-1}(\cos(\quad)) =
\]

(f) \(\tan(\arcsin(2/3)) \).

Write \(\tan \) as \(\frac{\sin}{\cos} \). Then use the theorem: \(\cos(\sin^{-1}(x)) = \sqrt{1-x^2} \). 4 or 5 symbols.

\[
\frac{\sin}{\cos} \]