Math 140 Lecture 3

Reminder: Gateway Exam week from Thursday.

Factoring and roots

Theorem. If \(a > 0 \), \(x^2 - a = (x - \sqrt{a})(x + \sqrt{a}) \). But \(x^2 + a \) has no roots and can’t be factored any more.

Division Law. If \(p(x)/d(x) \) has quotient \(q(x) \) and remainder \(r(x) \) then \(\frac{p(x)}{d(x)} = q(x) + \frac{r(x)}{d(x)} \). Multiply by \(d(x) \) to get \(p(x) = d(x)q(x) + r(x) \).

d(x) divides into \(p(x) \) evenly iff the remainder is 0 iff \(p(x) = d(x)q(x) \) iff \(d(x) \) is a factor of \(p(x) \).

If \(d(x) \) is a factor of \(p(x) \), the other factor of \(p(x) \) is the quotient factor \(q(x) \). To get this quotient factor divide: \(p(x)/d(x) \).

- Given \(p(x)/d(x) \), divide to get the quotient \(q(x) \) and remainder \(r(x) \). Write the answer in division law form: \(p(x) = d(x)q(x) + r(x) \).

 \[
 \begin{align*}
 x^3 + 1, & \quad \frac{x^3 + 1}{x - 1} = x^2 + x + 1 + \frac{2}{x-1}, \quad x^3 + 1 = (x - 1)(x^2 + x + 1) + 2 \\
 \text{Check that the answer is correct for } x = 0. \\
 \text{For } x = 0, \text{ we get } 0 + 1 = (-1)(0 + 0 + 1) + 2, 1 = 1.
 \end{align*}
 \]

X-Intercept. \(a \) is a root or zero of \(p(x) \) iff \(p(a) = 0 \).

Theorem. \(a \) is a root of \(p(x) \) iff \((x-a) \) is a factor of \(p(x) \).

To find all roots of \(p(x) \), completely factor \(p(x) \).

Factor the polynomial and find all roots.

- \(x + 2 \) \hspace{1cm} Root: -2
- \(x^2 + 2 \) \hspace{1cm} Fully factored as is, no roots.
- \(x^2 - 2 = (x + \sqrt{2})(x - \sqrt{2}) \) \hspace{1cm} Roots: \(-\sqrt{2}, \sqrt{2} \)
- \(x^2 - 4x + 4 = (x - 2)^2 \) \hspace{1cm} One repeated factor. Root: 2
- \(x^2 + 5x^2 + 8x + 4 \) \hspace{1cm} Given that \(-1\) is a root.

 \[(x - a) = (x - (-1)) = (x + 1) \quad \therefore \quad \text{we divide by } (x + 1).
 \]

 \[
 \begin{align*}
 \frac{x^3 + 5x^2 + 8x + 4}{x + 1} &= x^2 + 4x + 4 = (x + 2)(x + 2) \\
 x^3 + 5x^2 + 8x + 4 &= (x + 1)(x + 2)^2 \\
 \text{Roots: } -1, -2.
 \end{align*}
 \]
- \(x^3 - x^2 - 2x + 2 \) \hspace{1cm} Given that 1 is a root.

 \[
 \begin{align*}
 \frac{x^3 - x^2 - 2x + 2}{x - 1} &= x^2 - 2 = (x + \sqrt{2})(x - \sqrt{2}) \\
 x^3 - x^2 - 2x + 2 &= (x - 1)(x + \sqrt{2})(x - \sqrt{2}) \\
 \text{Roots: } -\sqrt{2}, \sqrt{2}.
 \end{align*}
 \]
- \(2x^2 + 2x - 2. \) Factor out the coefficient of \(x^2 \); find the roots with the quadratic formula; factor.

 \[
 2(x^2 + x - 1)
 \]

 Roots: \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2(1)} = \frac{-1 \pm \sqrt{5}}{2}, \frac{-1 - \sqrt{5}}{2} \)

 Factorization: \(2(x - \frac{-1 + \sqrt{5}}{2})(x - \frac{-1 - \sqrt{5}}{2}) \)

Functions

Definition. For sets \(A \) and \(B \), a function from \(A \) to \(B \) assigns a value \(f(x) \) in \(B \) to each \(x \) in \(A \). The domain of \(f \) is \(A \); the range of \(f \) is the set of all possible values \(f(x) \).

- \(f(x) = x^2 \) is a function from real numbers to real numbers.

 \[
 \text{Domain } = (-\infty, \infty) \quad \text{since } x^2 \text{ is defined for all numbers.}
 \]

 \[
 \text{Range } = [0, \infty) \quad \text{since } x^3 \text{ can never be negative.}
 \]

Notation. Sometimes, instead of writing \(f(x) = x^2 \), we define a function by writing \(y = x^2 \).

Thus \(y \) is the value of the function. Since it depends on \(x \), \(y \) is the dependent variable. Since \(x \) ranges freely over the domain, it is the independent variable.

A function may assign only one value to each \(x \).

Thus \(y = \pm \sqrt{x} \) is not a function.

- Of \(f \) and \(g \), which are functions? \((f \text{ isn’t, } g \text{ is) \n
 \begin{align*}
 f(2) &= 4 \\
 f(x)^2 + 2 &= x^2 + 2 \\
 xf(x) &= x^3 \\
 f(x^2) &= x^6 \\
 (f(x))^3 &= x^6 \\
 f(f(x)) &= x^4 \\
 \frac{f(x) - f(a)}{x - a} &= \frac{x^2 - a^2}{x - a} = x + a \\
 \frac{f(x + h) - f(x)}{h} &= \frac{(x + h)^2 - x^2}{h} = 2x + h
 \end{align*}
 \]