Math 140 Lecture 7

Inverse functions

Definition. \(f^{-1} \), the inverse of \(f \), is the function, if any, such that,
\[
\begin{align*}
 f^{-1}(f(x)) &= x & \text{when } f^{-1}(x) \text{ is defined and} \\
 f(f^{-1}(x)) &= x & \text{when } f(x) \text{ is defined.}
\end{align*}
\]

This says that \(f \) and \(f^{-1} \) undo each other:
\[
 f^{-1} \text{ undoes what } f \text{ does and gives you back } x.
\]

- \(f(x)=2x, \quad f^{-1}(x)=\frac{1}{2}x. \) Verify: \(f(f^{-1}(x))=x \) & \(f^{-1}(f(x))=x \)
- \(g(x)=x+3, \quad g^{-1}(x)=x-3. \)
- \(h(x)=2x+3, \quad h^{-1}(x)=(x-3)/2=\frac{1}{2}x-\frac{3}{2}. \)

Verify that \(h^{-1}(h(x))=x. \)

To undo a sequence of operations, you must undo them in the reverse order: the inverse of \(g(f(x)) \) is \(f^{-1}(g^{-1}(x)) \).

Let \(y=f^{-1}(x) \).
\[
f(f^{-1}(x))=x, \quad \text{by definition of inverse.} \]
\[
\therefore f(y)=x, \quad \text{since } y=f^{-1}(x).
\]
The converse is also true, thus

Theorem. \(y=f^{-1}(x) \) iff \(f(y)=x. \)

To find \(f^{-1}(x) \) for complicated functions:

Start with \(f(y)=x. \)

Solve for \(y \) to get \(y=f^{-1}(x) \).

- \(f(x)=x^3 \), find \(f^{-1}(x) \).
\[
f(y)=x \\
\therefore y^3=x \\
\therefore y=\sqrt[3]{x}. \quad f^{-1}(x)=\sqrt[3]{x}
\]

Warning. \(f^{-1}(x) \) and \((f(x))^{-1} \) are not the same.
\[
f^{-1}(x) = \text{the inverse} \\
(f(x))^{-1} = \text{the reciprocal} = 1/f(x).
\]

If \(f(x)=x^3 \)
\[
f^{-1}(x)=\sqrt[3]{x} \quad f^{-1}(0)=0 \\
(f(x))^{-1}=1/x^3 \quad (f(0))^{-1}=\text{undefined}.
\]

- \(f(x)=\frac{x+1}{x-1} \), find \(f^{-1}(x) \).
\[
f(y)=x, \quad \frac{y+1}{y-1}=x, \quad y+1=x(y-1) \\
y+1=xy-x, \quad y-xy=-x-1 \\
y(1-x)=-x-1, \quad y=\frac{x+1}{1-x} = \frac{x+1}{x-1} \\
\therefore f^{-1}(x)=\frac{x+1}{x-1}
\]

- If \(f(x)=x+3 \) then \(f^{-1}(x)=x-3. \)
- If \(g(x)=x/2 \) then \(g^{-1}(x)=2x. \)
- If \(h(x)=\sqrt{x} \) then \(h^{-1}(x)=x^2 \) for \(x \geq 0. \)

Note how the graph of \(f \) is related to the graph of \(f^{-1} \).

By the Theorem, \(y=f^{-1}(x) \) iff \(x=f(y) \). Thus the graph of \(y=f^{-1}(x) \) is the graph of \(f(y)=x \) which is just the graph of \(f(x)=y \) with \(x \) and \(y \) interchanged. Interchanging \(x \) and \(y \) reflects the plane around the major diagonal \(y=x \). Hence

Theorem. The graph of \(y=f^{-1}(x) \) is the reflection of the graph of \(y=f(x) \) across the major diagonal \(y=x \).

For each function, draw the three graphs \(y=f(x) \), \(y=x \), \(y=f^{-1}(x) \) on the same coordinate system.

- \(f(x)=x^3 \)
- \(f(x)=-x^3 \)

Definition. \(f \) is 1-1 (“one-to-one”) iff \(x \neq y \Rightarrow f(x) \neq f(y) \).

- \(f(x)=3x \text{ is 1-1} \quad x \neq y \Rightarrow 3x \neq 3y \)
- \(f(x)=x^2 \text{ is not} \quad 1 \neq 1 \text{ but } (-1)^2 = 1^2. \)

Theorem. The following are equivalent:
- \(f \) has an inverse
- \(f \) is 1-1
- no horizontal line intersects its graph more than once.

- Which of the following functions has an inverse?

Theorem. The domain of \(f^{-1} \) is the range of \(f \). The range of \(f^{-1} \) is the domain of \(f \).

Proof. The reflection around the major diagonal which carries the graph of \(f \) to the graph of \(f^{-1} \) also carries the domain of \(f \) to the range of \(f^{-1} \) and the range of \(f \) to the domain of \(f^{-1} \).

Stated in full, the inverse is the compositional inverse.

Compare it with the additive inverse and the multiplicative inverse.

For addition, 0 is the identity and the additive inverse of \(f \) is the negative \(-f \) since \(f + (-f) = 0 \).

For multiplication, 1 is the identity and the multiplicative inverse of \(f \) is the reciprocal \(1/f \) since:
\[
f \cdot (1/f) = (1/f) \cdot f = 1.
\]

For composition, \(id \) is the identity where \(id(x)=x \) and for the inverse \(f^{-1} \) of \(f \), the corresponding equation is \(f \circ f^{-1} = f^{-1} \circ f = id \).