The critical value \(z_\alpha \) is defined by \(P(z > z_\alpha) = \alpha \). Look up \(1-\alpha \) inside the normal table to get \(z_\alpha \) (\(P(z < z_\alpha) = 1 - \alpha \)) or find \(\alpha \) inside the table and get \(-z_\alpha\) (\(P(z < -z_\alpha) = \alpha \)).

Definition. For a normal sample average \(\bar{x} \) and margin of error \(b, \bar{x} \pm b = [\bar{x} - b, \bar{x} + b] \) is the 95% confidence interval. For any confidence level \(\beta \) (e.g., \(\beta = 90\% \)), the \(\beta \) confidence interval is the interval centered around \(\bar{x} \) which contains the true average \(\mu \) with probability \(\beta \).

\(\alpha = 1 - \beta \) is the significance level. Thus the confidence interval endpoints are \(z_{a/2} \) std. devs. above and below the mean.

Convention: write \(\alpha \) as a decimal and \(\beta \) as a percentage. If \(\alpha = .01 \), then \(\beta = (1-\alpha) = .99 = 99\% \).

Theorem. For a confidence level \(\beta \) and significance level \(\alpha = 1 - \beta \), the \(\beta \) confidence interval for the actual population mean \(\mu \) is

\[
\mu \in \bar{x} \pm z_{a/2} \times SE = [\bar{x} - z_{a/2} \times SE, \bar{x} + z_{a/2} \times SE].
\]

The 95% confidence interval for \(\mu \) is

\[
\mu \in \bar{x} \pm z_{.025} \times SE = [\bar{x} - 1.96 \times SE, \bar{x} + 1.96 \times SE].
\]

The true mean \(\mu \) is in this interval with probability 95%.

5/2% of the population is above the 95% confidence interval and 5/2% is below. Looking up 5/2% = .025 inside the normal table gives -1.96. Thus for \(\alpha = .05 \), \(z_{a/2} = z_{.025} = 1.96 = \) the margin-of-error.

If \(\beta = 99\% \), \(\alpha = (1-\beta) = .01 \), \(\alpha/2 = .005 \). Locate .005 inside the normal table to get -2.58. \(z_{a/2} = 2.58 \). 99% of the time, the correct answer \(\mu \) is in \(\bar{x} \pm 2.58 \times SE \).

Memorize the critical values, 1.645, 1.96 and 2.58, of \(z_{a/2} \) for the 90%, 95% and 99% confidence intervals.

- In a sample of \(n = 100 \) measurements, the mean \(\bar{x} = 40 \) and the sample std. dev. is \(s = 3 \). Find the 99% confidence interval for \(\mu \) around \(\bar{x} \).

The SE for the estimator \(\bar{x} \) is \(\frac{s}{\sqrt{n}} = \frac{3}{10} = .3 \) For 99% confidence, \(z_{a/2} = 2.58 \). Thus the interval is

\[
\bar{x} \pm 2.58 \times SE = \bar{x} \pm 2.58 \times SE
\]

Answer: \(\mu \in [40 \pm (2.58) \times .3] = [39.23, 40.77] \).

- In a sample of \(n = 100 \) measurements, the proportion of successes is \(\hat{p} = .40 \). Find the 99% confidence interval for \(p \) around the sample estimate of .40. \(p \in \hat{p} \pm 2.58 \times SE = .4 \pm 2.58 \sqrt{\frac{\hat{p}(1-\hat{p})}{100}} = .4 \pm 2.58 \times .049 = [.27, .53] \).

Estimating Differences of Means

To estimate the difference between UH males and females w.r.t. SAT scores, we first pick a random sample of males and calculate their average SAT score \(\bar{x}_1 \) and then pick a sample of females and calculate their average SAT score \(\bar{x}_2 \). Then \(\bar{x}_1 - \bar{x}_2 \) is the obvious estimate of the difference between male and female SAT scores.

Theorem. Given two populations with means \(\mu_1, \mu_2 \) and std. devs. \(\sigma_1, \sigma_2 \) and given two samples taken from the respective populations with \(n_1, n_2 \) elements and with sample means \(\bar{x}_1, \bar{x}_2 \) respectively: the difference \(\bar{x}_1 - \bar{x}_2 \) is an unbiased estimator of \(\mu_1 - \mu_2 \), \(E(\bar{x}_1 - \bar{x}_2) = \mu_1 - \mu_2 \).

The std. dev. of \(\bar{x}_1 - \bar{x}_2 \) is \(SE = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \).

Proof of SE. The sample std. dev. for the men is \(\frac{\sigma_1}{\sqrt{n_1}} \) with variance \(\frac{\sigma_1^2}{n_1} \). The women’s std. dev. is \(\frac{\sigma_2}{\sqrt{n_2}} \). Using the formulas \(\text{Var}(x_1 + x_2) = \text{Var}(x_1) + \text{Var}(x_2) \) and \(\text{Var}(ax) = a^2 \text{Var}(x) \), we get:

\[
\text{Var}(x_1 - x_2) = \text{Var}(x_1 + (-1)x_2) = \text{Var}(x_1) + \text{Var}((-1)x_2) = \text{Var}(x_1) + (-1)^2 \text{Var}(x_2) = \text{Var}(x_1) + \text{Var}(x_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}.
\]

Hence the std. dev. of \(x_1 - x_2 \) is \(SE = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \). \(\square \)

For approximately normal populations or for \(n_1, n_2 \geq 30 \), \(\bar{x}_1 - \bar{x}_2 \) is also approximately normal (can use normal tables).

Statistics can never prove that two populations are equal. One can only determine that there is a significant difference or that there is no significant difference at a given confidence level.

The 95% confidence interval around \(\bar{x}_1 - \bar{x}_2 \) contains the difference \(\mu_1 - \mu_2 \) of the true means with probability 95%.

\(0 \notin \) the 95% confidence interval for \(\mu_1 - \mu_2 \)

\(\Rightarrow \mu_1 - \mu_2 \) could be 0

\(\Rightarrow \mu_1 \) and \(\mu_2 \) do not differ significantly.

\(0 \notin \) the 95% confidence interval for \(\mu_1 - \mu_2 \)

\(\Rightarrow P(\mu_1 - \mu_2 < 5) < 5\% \)

\(\Rightarrow P(\mu_1 - \mu_2 > 5) < 5\% \Rightarrow \mu_1 \) and \(\mu_2 \) do differ significantly.

Warning, if 0 is in the 95% confidence interval, it could be (1) because means are equal or (2) because the sample sizes are not large enough to detect the difference.

- Males and females are tested for verbal ability.

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>100</td>
<td>105</td>
</tr>
<tr>
<td>40</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Are females significantly better at 95% confidence level?

\(\bar{x}_1 - \bar{x}_2 = -5, SE = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = \sqrt{\frac{20^2}{30} + \frac{10^2}{40}} = 3.98 \).

95% confid. int.: \(\mu_1 - \mu_2 = -5 \pm 1.96 \times 3.98 = [-12.80, 2.80] \).

No significant difference. Why? \(\mu_1 - \mu_2 = 0 \in [-12.80, 2.80] = 95\% \) confidence interval. The difference isn’t large enough to be significantly different from 0 at this level of confidence.