10.3. Find the approximating interval for the \(p \)-value of each \(t \) and given number \(df \) of degrees of freedom.

(a) Two-tailed test, \(t = 2.43 \), \(df = 12 \).

(b) Right-tailed test, \(t = 3.21 \), \(df = 16 \).

(c) Two-tailed test, \(t = -1.19 \), \(df = 25 \).

(d) Left-tailed test, \(t = -8.77 \), \(df = 7 \).

10.5’. A 12-element sample from a normal population has a mean of \(\bar{x} = 47.1 \) and sample variance \(s^2 = 4.7 \).

(a) Test the hypothesis \(H_0: \mu = 48 \). Use \(\alpha = .10 \). Find \(t \). Should \(H_0 \) be accepted or rejected. Why?

(b) Find the \(p \)-value interval.

(c) Find the 90% confidence interval for the population mean.

Answers

10.3.

(a) [.02, .05]

(b) [0, .005]

(c) [.2, 1]

(d) [0, .005]

10.5’. \(df = n-1 = 11 \), \(t_{a/2} = 1.796 \), \(SE = \frac{s}{\sqrt{12}} = .6258 \).

(a) \(t = \frac{47.1 - 48}{.6258} = -1.438 \),

Null region for \(t \): \(t \in [0] \)

Acceptance region for \(t \): \(t \in [0] = [-1.796, 1.796] \)

Accept \(H_0 \).

Why? \(t = -1.438 \in [-1.796, 1.796] \) = accept. region.

(b) \(t = 1.438 \) is between \(t_{10} = 1.363 \) and \(t_{05} = 1.796 \)

\(p \)-value \(= 2 \times .05 = [.10, .20] \)

(c) \(\mu \in \bar{x} \pm t_{a/2} SE = 47.1 \pm 1.796 \times .6258 = [45.976, 48.224] \)

Page 382.

10.17(2). (a) 1.94 (b) 4.61