Math 373 Lecture 24

Suppose you wish to measure the effect of smoking on heart disease. Don’t just compare a sample of 40 smokers to a sample of 40 nonsmokers; rather select a sample of 40 pairs \((A, B)\) such that \(A\) is a nonsmoker, \(B\) is a smoker but otherwise \(A\) and \(B\) are the same with respect to matters which affect heart disease, e.g., \(A\) and \(B\) have the same gender, same race, approximately the same height, weight and age. Such a paired difference experiment will more effectively separate the effects of smoking from the other factors which affect heart disease.

- A long-term study compares the expected lifespan of nonsmokers vs. smokers with the intent of demonstrating that nonsmokers live longer. 25 pairs are selected. Each pair consists of a nonsmoker and a smoker who are otherwise matched w.r.t. race, gender, weight, exercise and dietary preferences. The average difference between the nonsmoker and smoker lifespans in the sample was \(d = \bar{X}_N - \bar{X}_S = 4\) years with std. dev. \(s_d = 4\) years. Let \(d = \mu_N - \mu_S\).

\[H_0: \mu_N \leq \mu_S, \quad \mu_N - \mu_S \leq 0, \quad d \leq 0, \quad H_a: \mu_N > \mu_S, \quad \mu_N - \mu_S > 0, \quad d > 0.\]

\[df = 24, \quad SE = \frac{4}{\sqrt{25}} = \frac{4}{5} = 0.8, \quad t_a = 1.711\]

Null region for \(d\): \(d \in (-\infty, 0)\).

The acceptance region the difference \(d = \bar{X}_N - \bar{X}_S: d \in (-0, 0 + 1.711 \times 8) = (-0, 1.37)\).

Does smoking significantly reduce lifespan? Yes. Why?

\[d = 4 \notin (-\infty, 1.37) = \text{acceptance for no signific. reduction.}\]

- Find the minimum number of pairs of observations needed to estimate \(\mu_1 - \mu_2\) with margin of error \(0.5\) years.

Equation: \(E = 1.96 \frac{\sigma}{\sqrt{n}}\)
Note: use 1.96, not a \(t\) value. \(5 = 1.96 - \frac{4}{\sqrt{n}}, \frac{\sqrt{n}}{5} = \frac{1.96 \times 4}{5}, \quad n = 245.86 \rightarrow n = 246\)

Use the margin of error (which by definition is 1.96) not a \(t\) value.

Population variance and the \(\chi^2\) distribution

So far we have been mainly interested in a population’s mean \(\mu\) and have used the std. dev. \(s\) and variance \(\sigma^2\) mainly to determine the error in the estimate of \(\mu\). Sometimes though we are interested primarily in measuring the variance \(\sigma^2\). Annual income for example is correlated with IQ however the difference in income between males and females is due more to the difference in IQ variance (males have a larger variance; they dominate the extremes — both the homeless and the millionaires are mostly male) than to a difference between male and female IQs (there is none).

Suppose we select samples of size \(n\) from a normal population with mean \(\mu\) and variance \(\sigma^2\). Different samples have different sample means \(\bar{x}\) and different sample variances \(s^2\). The sample means \(\bar{x}\) have a normal distribution with expected value \(\mu\) and std. dev. SE.

What about the distribution of the sample variance \(s^2\)? The value of \(s^2\) of the sample variance will vary around the population variance \(\sigma^2\). However the distribution is not normal, not even symmetric. Since the variance can never be negative, the distribution is skewed to the right.

We normalize a sample mean to a z-score by subtracting \(\mu\) and dividing by SE. We “normalize” a sample variance to a chi-square variable by dividing by \(\sigma^2\) and multiplying by \((n-1)\).

Definition. \(\chi^2 = \frac{(n-1)s^2}{\sigma^2}\) is the chi-square variable for the sample variance \(s^2\).

If \(s = \sigma\), then \(\chi^2 = \frac{(n-1)s^2}{\sigma^2} = n - 1\). This \(n-1\) is the peak of the chi-square distribution; it is the “null value” for \(\chi^2\).

After normalizing the sample variance \(s^2\) to \(\chi^2\), we can use the chi-square probability distribution in Table 5 of Appendix I. As with the table for Student’s \(t\)-distribution, Table 5 gives the values \(\chi^2_α\) such that the tail to the right of \(\chi^2_α\) has probability \(α\). Since the distribution isn’t symmetric, the table also includes the values needed to calculate left-hand tails. As with the \(t\)-distribution, the degrees of freedom for an \(n\)-element sample is \(df = n - 1\).

Since variances are nonnegative, the right-tailed acceptance region is \([0, \chi^2_1-α]\) rather than \((-\infty, \chi^2_1-α]\). The left-tailed acceptance region is \([\chi^2_α, \infty\]. The two-sided acceptance region is \([\chi^2_1-α_2, \chi^2_α_2]\).

Acceptance regions always include the chi-square null value of \(n-1\). The rejection regions are their complements. *right-tailed refers to the rejection region's tail.*

- A random sample of \(n=25\) observations from a normal population produced a sample variance \(s^2=_10\). Does this provide sufficient evidence to indicate that \(\sigma^2<15\)?

State the null and alternate hypotheses regarding \(\sigma^2\).

\(H_0: \sigma^2 < 15, \quad \chi^2 < 24. \quad H_a: \sigma^2 \geq 15, \quad \chi^2 \geq 24. \quad df = 24\).

Null region for \(\sigma^2\): \([15, \infty\]. Null region for \(\chi^2\): \([24, \infty\).

Recall that \(\chi^2 = \frac{(n-1)s^2}{\sigma^2}\) and its null value is \(df=n-1\).

The \(\chi^2\) value of \(s^2=10\) is \(\chi^2 = \frac{(n-1)s^2}{\sigma^2} = \frac{24 \times 10}{15} = 16\).

Acceptance region for \(\chi^2\): \(\chi^2 \in [\chi^2_1-α_2, \infty\] = [13.85,_∞\).

Is \(\sigma^2\) significantly smaller than \(15\)?

No. \(\chi^2 = 16\in [13.85, _∞\] = acceptance region for \(H_0\).

The acceptance region for \(s^2\) is “centered” around the null value \(s^2=15\).

\[13.85 \leq \chi^2 \Rightarrow 13.85 \leq \frac{(n-1)s^2}{\sigma^2} \Rightarrow 13.85 \leq \frac{24s^2}{15} \Rightarrow \frac{13.85 \times 15}{24} \leq s^2 \Rightarrow s^2 \in [8.66, _∞\).

The confidence region for \(\sigma^2\) is “centered” around the measure value \(s^2=10\).

\[13.85 \leq \chi^2 \Rightarrow 13.85 \leq \frac{(n-1)s^2}{\sigma^2} \Rightarrow 13.85 \leq \frac{24s^2}{15} \Rightarrow \frac{13.85 \times 15}{24} \geq \sigma^2 \Rightarrow \sigma^2 \in [0, 17.33]\).

For the hypotheses \(H_0: \sigma^2 = 15\) and \(H_0: \sigma^2 = 15\), the acceptance region for \(\chi^2\) is \([12.40, 39.36]\).