Math 414 Lecture 23

Maximum Flows

- If the amount of water flowing into a node x increases by 5, how much can the flow into adjacent nodes increase? The upper number = the capacity; the lower = the flow.

We are asking for potential individual increases; these increases are not simultaneously achievable.

Remaining capacity = edge capacity - edge flow.

Potential increase calculation procedure

Suppose x is labeled with a potential increase in the amount of water available to it. Suppose y is an unlabeled node connected (in either direction) to x.

The potential increase at y is:

- $x \rightarrow y$ edges: min(potential increase at x, remaining capacity).
- $y \rightarrow x$ edges: min(potential increase at x, flow on the edge).

Label y with this increase if it is > 0. Otherwise, leave y unlabeled. Mark the edge with a check $✓$.

Max-flow algorithm. Don’t have to state it; be able to run it.

Input: A network.

Output: A maximal flow and a minimal cut.

Comment: At each step we label nodes with potential increases in flow. Then we either label edges with a new increased flow or make a minimum capacity cut.

- Start with 0 flow along each edge.
- A: (We look for a path along which the current flow can increase.)
 - Label the source with ∞.
 - B: Pick an edge between (in either direction) a labeled and an unlabeled node with a positive potential increase. Label the unlabeled node with this potential increase. Put a check on the edge.
 - If the sink is unlabeled and more nodes can be labeled, return to B.
 - If the sink is labeled with an increase d, work backward to the source to get a path along the checked edges (forward or backward). For each forward edge along the path, increase the flow by d; for each backward edge, decrease its flow by d.
 - Record the new flow (both the changed flows along the path and the unchanged flows not on the path).
 - Remove all node labels and edge checks. Go to A.

Marriage problem. There are 4 boys $\{A, B, C, D\}$ and 5 girls $\{M, N, O, P, Q\}$. “×” marks couples who will dance together. Find a matching with the most dance couples.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Q</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The shortest path problem

Given: a connected undirected weighted graph with an **origin** node. Here, the weight of an edge is its length. Goal: find the shortest path from each node to the origin. The distance between two nodes or between a node and an edge is the length of the shortest path which contains both of them.

- In the graph below, the distance from b to a is 3+1+2 = 6. The distance between edge E and a is also 3+1+2 = 6.

![Graph Diagram]

Note that the length of an edge is included in calculating the distance of the edge to a node.

- Three edges leave the origin as shown below. Find the distances to the first three edges. Which node has a known distance? Which node distances are unknown? If the three nodes shown are the closer to the origin than the other nodes, what are their distances?

![Graph Diagram]

When a node’s distance to the origin has been calculated, it becomes a known node. An edge between a known node and an unknown node is a cut edge. Its estimated distance is its known node’s distance plus its length. The cut edges form a cut between the known nodes and the unknown nodes. Every path from the origin an unknown node must cross one of these cut edges.

- All cut edges are shown.

Fill their boxes with their estimated distances.

Find the correct distance for one of the unknown nodes.

Lemma.
- The distance from the origin to another node = the minimum of the distances to its edges.
- If the estimated distance of a cut edge is ≤ the estimated distances of other cut edges, then the estimated distance is the true distance between the edge and the origin.