Due the lecture after Exam 1.

1. Let T be a transition matrix whose diagonal is $[1-p; 1-q]$, with $0 < p, q < 1$.

(a) Find T. Hint: What is the row total in a transition matrix?

(b) Find N and a diagonal matrix D such that $T = NDN^{-1}$.

(c) Find a formula for T^n.

(d) Find the limit as $n \to \infty$. Write this matrix with no fractions or negative numbers inside the matrix. In the factored answer, p and q both occur three times, the coefficient fraction has 5 symbols, inside the matrix are 4 symbols.

Hint. Factor out common terms to simplify your matrices. E.g. $\begin{pmatrix} \frac{a}{a+b} & \frac{1}{a+b} \\ \frac{1}{a+b} & \frac{b}{a+b} \end{pmatrix} = \frac{1}{a+b} \begin{pmatrix} a & 1 \\ -1 & b \end{pmatrix}$. There should be no fractions inside your matrices. Your first eigenvalue is 1, your first eigenvector is $[1; 1]$. Let the second eigenvalue be λ. Set the trace(T) = the sum of the eigenvalues and solve for λ. Then solve $(A-\lambda I)X = 0$ to get the second eigenvector X. The solution is not unique; $X = 0$ is not allowed. These eigenvectors are the two columns of N.

Continued on back side.
2. An inspector inspects TV sets and classifies them as F(fair), G(good), or E(excellent). Excellent sets are released for sale. Fair and good sets are sent to a shop for adjustment. After adjustment at the shop, a fair set becomes fair (probability 1/3), good (1/3) or excellent (1/3). After adjustment, a good set becomes good or excellent with equal probability. Adjustments are repeated until a set is becomes excellent and is released for sale.

(a) For $n = 1, 2, 3, 4, \ldots$ find the probability it will take exactly n steps to go from a fair state to an excellent state. Use $\sum_{i=0}^{n-1} r^i = (1 - r^n)/(1 - r)$ to simplify to a formula without summations. The answer should have the form $a(r^n - s^n)$.

(b) Find the expected number of steps to go from a fair, good, or excellent state to an excellent state. Simplify as much as you can. Instead of using infinite sums, write equations for say $f(G)$ then solve. The sum of the three answers should be 9/2.