For a random Markov chain, in the limit as time goes to infinity, a state is either visited infinitely often, or is visited only finitely often, in which case, after some final visit, it is not visited again.

Suppose state \(x \) is visited infinitely often. Suppose there are arrows leading from \(x \) to \(a, b, \) and \(c \) with probabilities 1/2, 1/3, and 1/6. Then, by the Strong Law, with probability 1, the proportion of times it goes from \(x \) to \(a, b, \) and \(c \) respectively will be 1/2, 1/3, and 1/6, in the limit. (Technical check, the sequence of states in a Markov chain are not independent but the sequence of states following visits to \(x \) are.)

- Starting from \(A \), where will a random chain of events eventually go?

![Diagram](https://via.placeholder.com/150)

Starting at \(A \), by the Strong Law, it will eventually leave \(A \) (with probability 1). Once it leaves \(A \), it never returns. Likewise for \(F \). If it goes to \(E \), it gets stuck there forever. Otherwise it cycles through the set \(\{B, C, D, E\} \) each of which will, with probability 1 be visited infinitely often.

For a probability \(p \), \(\lim_{n \to \infty} p^n = 0 \) if \(p < 1 \); =1 if \(p = 1 \).

Definition. A state is absorbing if you can’t check out (the \(E \) above is absorbing). If it is visited only in finite often (with probability 1), it is transient (states \(A, F \) are transient). If, once visited, it is visited infinitely often (with probability 1), it is recurrent (\(B, C, D \) are recurrent).

Convention: Omit arrows with probability 0.

Definition. For states \(i \) and \(j, i \to j, j \) is reachable from \(i \), iff there is a path from \(i \) to \(j \). A set of states is closed iff no arrow leads from a state in the set to a state outside the set iff one can not leave the set. A set of states is irreducible iff it is closed and no proper subset is closed.

In any diagram, \(\emptyset \) and the entire state space \(S \) are trivially closed. For random events, with probability 1, one eventually ends up in one of the irreducible sets.

- In the diagram above, \(\{E\} \) and \(\{B, C, D\} \) are the irreducible sets, \(\{F, B, C, D\} \) is closed but not irreducible.

A closed set is a subspace of the state space. Its transition matrix is a submatrix of the full matrix. Its matrix \(T \) is regular iff for some \(n, T^n \) has only nontrivial entries (neither 0 or 1).

Theorem. Let \(i, j, k \) be states of a Markov process. Then
- (a) \(i \to j \) and \(j \to k \) implies \(i \to k \).
- (b) If \(j \) is recurrent and \(j \to k \), then \(k \to j \) and \(k \) is recurrent.
- (c) If \(j \to k \) always implies \(k \to j \), then \(j \) is recurrent.
- (d) If, for some \(k, j \to k \) but not \(k \to j \), then \(j \) is transient.
- (e) The set of states reachable from \(j \) is closed.

If \(j \) is recurrent, the set of states reachable from \(j \) is the recurrence class of \(j \). It is irreducible.

- In the example, the recurrence class of \(E \) is \(\{E\} \); the recurrence class of \(C \) is \(\{B, C, D\} \).

States are in the same recurrence class are mutually reachable and any infinite chain in the class will include all members of the class infinitely often (with probability 1).

Theorem. Starting from a state \(j \), the expected number of return visits to \(j \) equals \(\sum_{n=1}^{\infty} T^n(j,j) \).

Proof. Let \(I_n = 1 \) if the state at time \(n \) is \(j \), 0 if not. The expected number of return visits, starting from \(j \), is

\[
E[\sum_{n=1}^{\infty} I_n|X_0 = j] = \sum_{n=1}^{\infty} E[I_n|X_0 = j] = \sum_{n=1}^{\infty} (1(T^n(j,j)) + 0(1 - T^n(j,j))) = \sum_{n=1}^{\infty} T^n(j,j).
\]

Theorem. Suppose \(i \) and \(j \) are states. Then
- (a) If \(j \) is not reachable from \(i \), then for all \(n, T^n(i,j) = 0 \).
- (b) If \(j \) is transient, then \(\lim_{n \to \infty} T^n(i,j) = 0 \).

Now suppose \(i \) and \(j \) belong to the same recurrence class and the matrix for the class is regular.

Let \(\pi_j = \lim_{n \to \infty} T^n(j,j) \). This is the “long-term” probability of being at \(j \). Let \(M_j = \) the average time between visits of \(j \). For a random chain \(\omega \) of states, let \(N_n(j,\omega) = \) total number of visits to \(j \) up to time and including \(n \). Thus \(N_n(j,\omega)/n = \) the percentage of time during \([0,n]\) spent in state \(j \).

Clearly, \(\pi_j \) small
- the proportion of time at \(j \) is small
- on average, the number of visits \(N_n(j,\omega) \) is small
- the average time \(M_j \) between visits is long.

Theorem. If \(i \) and \(j \) are in the same recurrence class and the class matrix is regular, then

\[
\pi_j = \lim_{n \to \infty} T^n(i,j) = T^\infty(i,j) \text{ (} \pi_j \text{ doesn’t depend on } \omega \text{)}
\]

\[
\pi_j = \lim_{n \to \infty} N_n(j,\omega)/n \text{ (with probability 1 for random } \omega \text{),} \pi_j = 1/M_j .
\]
Now suppose C_1, C_2, \ldots, C_m are the recurrence classes and S is the set of transient states. Order the states so that those in C_1 come first, those in C_2 second, \ldots, and those in S are last. Then the transition matrix T will have submatrices along the diagonal, one for each recurrence class, a row for each transient state and zeros elsewhere.

Here $C_1 = \{E\}$ and $C_2 = \{B, C, D\}$ are the recurrence classes. $S = \{A\}$ is the transient class. Note the block structure of the matrix T. Which areas are necessarily 0?

\[
\begin{array}{c|cccc}
\text{C} & E & B & C & D \\
\hline
E & 1 & 0 & 0 & 0 \\
B & 0 & 0 & 0 & 1 \\
C & 0 & 1/2 & 1/2 & 0 \\
D & 0 & 0 & 1 & 0 \\
A & 1/4 & 1/4 & 1/4 & 0 & 1/4 \\
\end{array}
\]

T^n and T^∞ will have the same block structure as T. The transient columns of T^∞ will be 0 by last time’s theorem: j transient $\Rightarrow \lim_{n\to\infty} T^n(i, j) = 0$. Here it is the last column.

$T^\infty =
\[
\begin{array}{c|cccc}
\text{C} & E & B & C & D \\
\hline
E & ? & 0 & 0 & 0 \\
B & 0 & ? & ? & ? & 0 \\
C & 0 & ? & ? & ? & 0 \\
D & 0 & ? & ? & ? & 0 \\
\end{array}
\]

To find T^∞, calculate the limits of the submatrices along the diagonal and then the limits of the transient rows.