Math 416 Lecture 11
Birth and death processes, queueing theory
In arrival processes, the state only jumps up, in a
birth-death process, it can either jump up or down by one
unit. A birth-death process counts the number of objects
j=N, in a queue to which items can be added or deleted.
In an arrival process, the arrival rate \(\lambda \) is constant and
does not depend on the state \(j \) (the size of the population). In a
birth/death process, both births and deaths may depend on
the state \(j \). When the population is 0, the death rate \(\mu_0=0 \)
(the there is no one left to die). If there is an upper bound \(M \) on
the population size, the state space of population sizes is
\(\{0, 1, 2, ..., M\} \). When the population size is maximum, the
birth rate \(\lambda_M=0 \) since no more births are possible.

Examples of queues.
- The customer queue in front of a checkout counter. A
 birth occurs when a customer joins the line. A death
 occurs when the customer has been served or when a
 customer leaves the line for another checkout lane.
- The resident population of Hawaii is a queue. A birth
 occurs when a new resident arrives or is born. A death
 occurs when a resident dies or leaves Hawaii.
- The world-wide population of monk seals. Births and
deaths are the only way the population changes. In this
case, when the population \(j=0 \) not only is the death
rate \(\mu_j=0 \), but also the birth rate \(\lambda_j=0 \) (extinction has
occurred).
- The number of occupied tables in a restaurant. This
 queue has an upper bound, the number \(M \) of tables.
 When all tables are occupied tables, \(j=M \), and \(\lambda_j=0 \)
since no more births (occupied tables) are possible.

Two births might occur at the same time but since time \(t \)
is continuous, this has probability 0 and we ignore such
cases when computing probabilities.

In Poisson processes the time between arrivals is
exponentially distributed with some arrival rate \(\lambda \). The
obvious analog for birth-death processes would be to
measure the time between changes — either births or
deaths. However, the birth rates and death rates may
differ. In a steady-state system, the birth and death rates
are the same. If the birth rate exceeds the death rate, there
will be a population increase. The birth \(\lambda_j \) and death rates
\(\mu_j \) may depend on the size \(j \) of the population. The
death rate is 0 when the population is 0 and the birth rate is
often proportional to the population size \(j \).

Definition. A birth-death process is a continuous-time
counting process \(N_t \) with birth rates \(\lambda_j \) and a death rates \(\mu_j \)
which depend on the current state \(j=N_t \). \(t \in [0, \infty) \) = timelset
\(N_t \in \{0, 1, 2, 3, \ldots \} \) or
\(\{0, 1, 2, 3, \ldots, M\} \) if there is an upper bound \(M \). Unless
specified otherwise, assume \(N_0=0 \).

Let \(T_n \) be the sequence of state-change times. \(T_0=0, T_1=\)
the time of the first birth/death, \(T_2=\) the time of the
second state change, ... As in any Poisson process, the
times \(T_{n+1} - T_n \) between state changes are exponentially
distributed with a combined rate of \(\lambda_j + \mu_j \) where \(j \) is the
state \(j=N_t \) at time \(t = T_n \).

Let \(X_t \) be the sequence of states \(X_n = X_{T_n} \) at the times \(T_n \)
of a state change (either a birth or death). \(X_0=0, X_1=\)
the state immediately after the first birth/death, \(X_2=\)
state at the time of the second state change, Since
\(N_{T_n} = X_n, N_1 = X_{T_1} \) when \(t \in [T_n, T_{n+1}] \).

Given a time \(t \) and the current state \(j=N_w \), the time \(T_{n+1} \)
and the type (birth or death) of the next state change
depends only on the current state \(j \). It is independent of
the time \(t \) and independent of the previous history of
times \((T_1, T_2, ..., T_{n-1}) \) and states \((X_1, X_2, ..., X_{n-1}) \).
The combined rate of transitions (births plus deaths) is \(\lambda_j +
\mu_j \). At transitions, the probabilities of births and deaths =
\(P[X_{n+1} = j + 1 | X_n = j] = \lambda_j / (\lambda_j + \mu_j) \) and
\(P[X_{n+1} = j - 1 | X_n = j] = \mu_j / (\lambda_j + \mu_j) \) respectively.

Let \(B_t \) be the sequence of birth times. \(B_0=0, B_1=\) the time
of the first birth, The times between births are
exponentially distributed with a birth rate of \(\lambda_j \).

Let \(D_t \) be the sequence of death times. The times between
deaths are exponential with a death rate of \(\mu_j \).

A hospital has \(M \) beds. Whne beds are available, patients
are admitted at a rate \(\lambda \). Each individual patient dies or is
released at a rate of \(\mu \). If there are \(j \) beds occupied, what
are \(\lambda_j \) and \(\mu_j \)?

If \(j < M \), then \(\lambda_j = \lambda \).
If \(j = M \), \(\lambda_j = 0 \) (no more beds are available).
The more occupied beds there are, the higher the rate of
deaths/releases. Hence we expect \(\mu_j \) to be proportional to \(j \)
rather than constant. If there are \(j \) beds occupied and each
occupant is released/dies at a rate of \(\mu \), then the total
death/release rate is \(\mu_j = j \mu \).

Definition. Let \(p_{ij}(t) = P[N_t = j \mid N_0 = i] \).

Let \(\lambda_i = \lim_{t \to \infty} p_{ij}(t) \).
As was the case for \(\pi_i \) and regular Markov chains, under
general regularity conditions, the limit \(\lambda_i = \lim_{t \to \infty} p_{ij}(t) \)
exists and is independent of the starting state \(j \). \(\lambda_j \) is the
eventual proportion of time spent in state \(j \).

In a care-home, 1/8 of the patients alive at time \(t \) will
eventually leave the home (as opposed to dying in the
home). The number of patient arrivals \(N_t \) is Poisson with
rate \(\lambda \). Find the number \(D_{2t} \) of patients at time \(2t \) who
will eventually leave. The obvious answer is \(\frac{1}{8} \lambda(2t) \).

Interpret “1/8 of the patients leave” as an expected value:

\[
E[D_1 | N_t = n] = \frac{1}{8} n.
\]

\[
E[D_{2t}] = \sum_{n=0}^{\infty} E[D_{2t} | N_{2t} = n] P[N_{2t} = n]
= \sum_{n=0}^{\infty} \frac{1}{8} n P[N_{2t} = n]
= \frac{1}{8} \sum_{n=0}^{\infty} n P[N_{2t} = n] = \frac{1}{8} E[N_{2t}] = \frac{1}{8} \lambda(2t).
\]

Kolmogorov Equations

From Lecture 16: **Definition.** Let \(p_{ij}(t) = P[N_t = j | N_0 = i] \).

Let \(p_j = \lim_{t \to \infty} p_{ij}(t) \).

As was the case for \(\pi_j \), under rather general regularity conditions, the limit exists and is independent of the initial state \(i \). \(p_j = \lim_{t \to \infty} p_{ij}(t) \) is eventual proportion of time spent in state \(j \). For this lecture and the homework, assume the needed regularity conditions hold.

We estimate change using a small step of size \(h \) where \(h \) is sufficiently small that the probability of two or more birth/death events during time \(h \) is in small enough that such double events may be ignored in estimating population changes during time intervals of size \(h \). For differentiable functions and small \(h \):

\[
f(t + h) - f(t) \approx f'(t)h.
\]

The amount of change is proportional to the rate of change and to the length of the time period.

For a birth/death process the rates of change \(f'(x) \) are the birthrates \(\lambda_j \) and death rates \(\mu_j \) where \(j \) is the population size. Thus over a time period of length \(h \) the amount of change due to births is \(\lambda_j h \) and the change due to deaths is \(\mu_j h \).

\[
p_j(t) = \text{the probability of being in state } j \text{ at time } t.
\]

\[
= \text{the probability the population has size } j \text{ at time } t.
\]

\[
p_j(t + h) - p_j(t)
= \text{the change in the probability of being in state } j \text{ during the time interval } [t, t + h].
\]

There are two ways a population can cease to be of size \(j \): via a birth or death. There are two ways a population can get to be of size \(j \): a birth to a population of size \(j-1 \) or a death to a population of size \(j+1 \). Thus

\[
\lambda_{j-1}, \lambda_j \leftarrow \mu_j \leftarrow \mu_{j+1}\]

\[
p_j(t + h) - p_j(t) \approx p'_j(t) h
= -p_j(t) \lambda_j h - p_j(t) \mu_j h + p_{j-1}(t) \lambda_{j-1} h + p_{j+1}(t) \mu_{j+1} h
= h(-p_j(t) \lambda_j - p_j(t) \mu_j + p_{j-1}(t) \lambda_{j-1} + p_{j+1}(t) \mu_{j+1})
\]

\[
p_j(t + h) - p_j(t) = \frac{h}{\lambda_j} p_j(t) \lambda_j h - \frac{h}{\lambda_{j-1}} p_{j-1}(t) \lambda_{j-1} h + \frac{h}{\mu_j} p_j(t) \mu_j h + \frac{h}{\mu_{j+1}} p_{j+1}(t) \mu_{j+1} h
= \frac{h}{\lambda_j} p_j(t) \lambda_j h + \frac{h}{\lambda_{j-1}} p_{j-1}(t) \lambda_{j-1} h + \frac{h}{\mu_j} p_j(t) \mu_j h + \frac{h}{\mu_{j+1}} p_{j+1}(t) \mu_{j+1} h
\]

Taking the limit as \(h \) goes to 0 gives

\[
p'_j(t) = -p_j(t) \lambda_j - p_j(t) \mu_j + p_{j-1}(t) \lambda_{j-1} + p_{j+1}(t) \mu_{j+1}
\]

When \(j = 0 \), \(\mu_j = 0 \), there is no smaller population. Thus the equation becomes

\[
p'_0(t) = -p_0(t) \lambda_0 + p_1(t) \mu_1
\]

Under rather general regularity conditions, in the limit, as \(t \to \infty \), the population probability distribution approaches a stable distribution \(p_j \). In a stable distribution the population remains unchanged. Hence \(p_j(t) = 0 \). Thus \(p_j(t) \) is a constant \(p_j \).

Hence the long-term the probabilities \(p_0, p_1, p_2, ... \) of the population having sizes \(j = 0, 1, 2, ... \) satisfy the following **Kolmogorov** steady state equations:

\[
0 = -p_0 \lambda_0 + p_1 \mu_1,
\]

\[
...,
0 = -p_j \lambda_j - p_j \mu_j + p_{j-1} \lambda_{j-1} + p_{j+1} \mu_{j+1},
\]

\[
... .
\]

Thus \(p_1 \) is proportional to \(p_0 \).

\(p_2 \) is proportional to \(p_1, p_0 \) and hence to just \(p_0, p_{j+1} \) is proportional to \(p_0 \).

Hence all are proportional to \(p_0 \) and hence all are proportional to each other.

In particular \(p_j \) is proportional to \(p_{j-1} \).

Is \(p_j \) directly or inversely proportional to \(\lambda_{j-1} \)?

Is \(p_j \) directly or inversely proportional to \(\mu_j \)?

Write \(p_j \) in terms of \(p_{j-1} \), \(\lambda_{j-1} \) and \(\mu_j \).