Infinite Horizon problems

The infinite value function of policy u for the infinite horizon problem with discount factor α and initial state i is

$$W(i, u) = E[\sum_{n=0}^{\infty} \alpha^n r(X_n, u(X_n)), X_0 = i].$$

The optimal value function is $W(i) = \max_u W(i, u)$. u^* is an optimal policy iff each initial state i, $W(i, u^*) = W(i)$. The recursion equation is

$$W(i, u) = r(i, u(i)) + \alpha \sum_j T_{ij} W(j).$$

Optimal stopping times

Rules for initial known optimal values.
- If i is a dead-end state (you can’t leave), $W(i) = r(i)$
- If $r(i)$ is \geq all rewards reachable from i, $W(i) = r(i)$
- If i is in an irreducible class, $W(i) = r(j)$ where $r(j)$ is the max reward in the irreducible class.

If $W(i, u)$ satisfies this dynamic programming equation, then $W(i, u) = W(i)$ and u is an optimal policy.

The following process gives the successive approximations $w_n(i)$. Let $w_0 = [0, 0, 0, ...]^T$. Define w_{n+1} by applying the dynamic equation for $W(i)$ to $w_n(i)$:

$$w_{n+1}(i) = \max_a [r(i, a) + \alpha \sum_j T_{ij} w_n(j)].$$

Lemma. Given u, with transition matrix $T_{ij}(u)$, let $r_u = [r(0, u(0)), r(1, u(1)), r(2, u(2)), ...]^T$. Let $X = [x_0, x_1, x_2, ...]^T = [W(0, u), W(1, u), W(2, u), ...]^T$. Then X is the solution to the matrix equation $(I - \alpha T_u)X = r_u$.

Finite horizon portfolios. The value function for the finite horizon problem with final time T and policy u and initial state $X_{init} = (x, y, l)$ is:

$$V(x, y, l, u) = E[R(x_T, l_T) + \sum_{n=0}^{T-1} r(X_n, U_n^a, U_n^b) | X_0 = X_{init}].$$

If $U_{n-1}^a = a$ and $U_{n-1}^b = b$, then the recursion equation is

$$V_{n-1}(x, y, l, u) = ax + by + \frac{1}{T} \sum_{i=1}^{T} r_i(x_i, x_i^* V_{n}(x_i^*, k-a, 1+\beta y, l-b, u).$$

The optimal value $V(x, y, l) = \max_u V(x, y, l, u)$ has the usual dynamic programming equation:

$$V_{n-1}(x, y, l, u) = \max_{a,b} \{ ax + by + \frac{1}{T} \sum_{i=1}^{T} r_i(x_i, x_i^* V_{n}(x_i^*, k-a, 1+\beta y, l-b, u).$$

Two person zero-sum games

Lemma. The amount I can expect to win by consistently playing the strategy for a given row is the minimum payoff for that row.

Maximin Theorem. The strategy for I with the maximum expected win is the strategy whose row has the maximum minimum. This is the maximin strategy for I.

Definition. A game is strictly determined if the entry in the maximin row and the minimax column

= the payoff for I’s maximin strategy

= the payoff for II’s minimax strategy.

This entry is the saddle or equilibrium point of the game.

Theorem. If there is an equilibrium point, then both players can optimize their earnings by always playing their simple (unmixed) maximin and minimax strategies.