Math 253A - Accelerated Calculus III

Problem sheet 1

01/09/2019

Problem 1

Describe the sets of points (x, y, z) in the three dimensional space that satisfy the following conditions:
a) $0 \leq x \leq 1,0 \leq y \leq 1$.
b) $x^{2}+y^{2} \leq 2, z=3$.
c) $x^{2}+y^{2}=2, y \geq 0$.
d) The set of points equidistant from the origin and the point $(0,0,2)$. Give an equation for this set.

Problem 2

a) Find the radius and the center of the sphere

$$
3 x^{2}+3 y^{2}+3 z^{2}+2 y-2 z+1=10
$$

b) Find the equation of the sphere with center $(2,6,4)$ that passes through the origin.
c) Give an inequality to describe the half space of points on and below the $x y$-plane.
d) Find a pair of equations for the intersection of the cone $z=x^{2}+y^{2}$ with the plane $z=4$. Describe the set of all intersection points.

Problem 3

a) Compute the distance between the points $P=(1,2,3)$ and $Q=(3,2,1)$.
b) Give the component form of the vectors $\overrightarrow{P Q}$ and $\overrightarrow{Q P}$. Show that $\overrightarrow{P Q}=-\overrightarrow{Q P}$.
c) Calculate the magnitudes of the vectors $\overrightarrow{P Q}$ and $-4 \overrightarrow{Q P}+\overrightarrow{P Q}$.
d) Find the components of the vector $3 \vec{u}-2 \vec{v}$ for $\vec{u}=\langle-1,0,-3\rangle$ and $\vec{v}=\langle 1,-1,2\rangle$.

