Math 253A - Accelerated Calculus III

Homework sheet 3

Due 02/02/2018

To read: 11.6, 12.1 and 12.2 in the book.

Problem 1

a) Sketch the following two surfaces in the three dimensional space:

$$
\text { (i) } y^{2}+z^{2}=4 z^{2}, \quad(i i)(x-2)^{2}+(y-1)^{2}=1
$$

b) Give a parametrization of the part of the circle $x^{2}+y^{2}=4$ in the first quadrant of the $x y$-plane (i.e. $x \geq 0$ and $y \geq 0$. Use $(2,0)$ as initial and $(0,2)$ as end point.
c) Give a parametrization of the tangent line at the circle curve in b) at the point $\left(x_{0}, y_{0}\right)=$ $(\sqrt{2}, \sqrt{2})$.

Problem 2

We consider a particle moving in time t along the curve given by

$$
\vec{r}(t)=2 \cos t \vec{i}+3 \sin t \vec{j}+2 t \vec{k}, \quad t=[0,2 \pi] .
$$

a) Graph this curve. Is it a closed curve?
b) Give the velocity and the acceleration of the particle for any $t \in[0,2 \pi]$.
c) Find the particle's speed and direction of motion at the time $t_{0}=\pi / 2$.
d) Give a parametrization of the tangent line to the curve \vec{r} at $t_{0}=\pi / 2$.

Problem 3 (Throwing a baseball)

A baseball is thrown from the stands 32 ft above the field at an angle of $30^{\circ} \mathrm{up}$ from the horizontal (Have a look at Figure 12.10 and the corresponding formula (7) in the book). When and how far away will the ball strike the ground if its initial speed is $v_{0}=32 \mathrm{ft} / \mathrm{sec}$?

Problem 4

a) Evaluate the following vector valued integral:

$$
\int_{1}^{2}\left((6-6 t) \vec{i}+3 \sqrt{t} \vec{j}+\frac{4}{t^{2}} \vec{k}\right) d t
$$

b) Solve the following initial value problem for \vec{r} as a vector valued function of t :

$$
\vec{r}^{\prime \prime}(t)=-\vec{i}-\vec{j}-\vec{k},
$$

with the initial conditions $\vec{r}(0)=\langle 10,10,10\rangle$ and $\vec{r}^{\prime}(0)=\langle 0,0,0\rangle$.

