Math 253A - Accelerated Calculus III

Homework sheet 4

Due 02/09/2018

To read: Section 12.3, 12.4, 12.5 and 12.6 in the book.

Problem 1 (Length is independent of parametrization)

To illustrate that the length of a smooth curve in space does not depend on the used parametrization, calculate the length of one turn of the helix $\vec{r}(t)=\langle\cos t, \sin t, t\rangle, t \in[0,2 \pi]$, using the following parametrizations. Show the explicit calculation for all four length integrals.
a) $\vec{r}(t)=\langle\cos t,-\sin t,-t\rangle, t \in[-2 \pi, 0]$.
b) $\vec{r}(t)=\left\langle\cos t^{2}, \sin t^{2}, t^{2}\right\rangle, t \in[0, \sqrt{2 \pi}]$.
c) $\vec{r}(t)=\langle\cos 4 t, \sin 4 t, 4 t\rangle, t \in[0, \pi / 2]$.
d) $\vec{r}(t)=\left\langle\cos \left(e^{t}\right), \sin \left(e^{t}\right), e^{t}\right\rangle, t \in(-\infty, \ln (2 \pi)]$.

Problem 2

Consider the helix given by

$$
\vec{r}(t)=\langle a \cos t, a \sin t, b t\rangle, \quad t \geq 0
$$

with some constants $a, b>0$.
a) Calculate the unit vectors $\vec{T}(t), \vec{N}(t)$ and the curvature $\kappa(t)$.
b) Show that the torsion of the helix is given by $\tau=b /\left(a^{2}+b^{2}\right)$. For this calculate the binormal $\vec{B}(t)=\vec{T}(t) \times \vec{N}(t)$ and its derivative $\vec{B}^{\prime}(t)$. Then, the torsion is given by the formula

$$
\tau(t)=-\frac{\vec{B}^{\prime}(t) \cdot \vec{N}(t)}{\left|\vec{r}^{\prime}(t)\right|}
$$

What is the largest value τ can have for a fixed value of a ? Give reasons for your answer.

Problem 3

a) For the curve

$$
\vec{r}(t)=(\cos t+t \sin t) \vec{i}+(\sin t-t \cos t) \vec{j}
$$

calculate the arc length parameter $s(t)$ starting from the initial location $\vec{r}(0)=\langle 1,0,0\rangle$, i.e. calculate the integral $s(t)=\int_{0}^{t}\left|\vec{r}^{\prime}(\tau)\right| d \tau$. What is the length of the curve for the portion $t \in[\pi / 2, \pi]$?
b) Consider the curve

$$
\vec{r}(t)=\left\langle t \cos t, t \sin t, t^{2}\right\rangle
$$

For $t=0$, give the acceleration $\vec{a}(0)=\vec{r}^{\prime \prime}(0)$ in the form $a_{T} \vec{T}(0)+a_{N} \vec{N}(0)$.

Problem 4

Read the section on Kepler's Third law in the book (page 689). Then, find the length of the major axis a of Earth's orbit using Kepler's third law and the fact that Earth's orbital period is 365.256 days.

