Math 253A - Accelerated Calculus III

Homework sheet 6

Due 02/27/2018

To read: Section 13.3, 13.4 and 13.5 in the book.

Problem 1

Each of the following two exercises gives a function f and a positive number ϵ. Show that you can find a proper $\delta>0$:
a) Given $f(x, y)=\frac{y}{x^{2}+1}, \epsilon=0.05$, find a $\delta>0$ such that for all (x, y) with $\sqrt{x^{2}+y^{2}}<\delta$ you get $|f(x, y)-f(0,0)|<\epsilon$.
b) Given $f(x, y, z)=x y z, \epsilon=0.008$, find a number $\delta>0$ such that for all (x, y) with $\sqrt{x^{2}+y^{2}+z^{2}}<\delta$ you get $|f(x, y, z)-f(0,0,0)|<\epsilon$.

Problem 2

Find the partial derivatives $\partial f / \partial x$ and $\partial f / \partial y$ (and $\partial f / \partial z$ if f depends also on z) for the following functions:
a) $f(x, y)=e^{x y} \ln y$.
b) $f(x, y)=\cos ^{2}\left(2 x-y^{2}\right)$.
c) $f(x, y, z)=x-\sqrt{y^{2}+z^{2}}$.
d) $f(x, y, z)=1 / \sqrt{x^{2}+y^{2}+z^{2}}$.

Problem 3

Consider the function

$$
f(x, y)=\left\{\begin{array}{ll}
\frac{x^{2} y^{2}}{x^{4}+y^{4}} & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array} .\right.
$$

a) Calculate the first partial derivatives f_{x} and f_{y} of f at $(0,0)$ (use the limit definition for this).
b) Calculate the first partial derivatives of f at all other points $(x, y) \neq(0,0)$.
c) Is the function f continuous at the origin?
d) Is the function differentiable at the origin?

Problem 4

a) Find the direction \vec{v} in which the function $f(x, y, z)=\sqrt{x^{2}+x y+z^{2}}$ attains its maximal directional derivative at the point $\left(x_{0}, y_{0}, z_{0}\right)=(1,4,2)$. Make sure your answer is a unit vector.
b) What is the maximal directional derivative of $f(x, y)=\sqrt{x y}$ at the point $(\sqrt{3}, 1)$?

