Math 253A - Accelerated Calculus III

Homework sheet 6

Due 02/27/2018

To read: Section 13.3, 13.4 and 13.5 in the book.

Problem 1

Each of the following two exercises gives a function f and a positive number ϵ . Show that you can find a proper $\delta > 0$:

- a) Given $f(x,y) = \frac{y}{x^2+1}$, $\epsilon = 0.05$, find a $\delta > 0$ such that for all (x,y) with $\sqrt{x^2 + y^2} < \delta$ you get $|f(x,y) f(0,0)| < \epsilon$.
- b) Given f(x, y, z) = xyz, $\epsilon = 0.008$, find a number $\delta > 0$ such that for all (x, y) with $\sqrt{x^2 + y^2 + z^2} < \delta$ you get $|f(x, y, z) f(0, 0, 0)| < \epsilon$.

Problem 2

Find the partial derivatives $\partial f/\partial x$ and $\partial f/\partial y$ (and $\partial f/\partial z$ if f depends also on z) for the following functions:

a) $f(x,y) = e^{xy} \ln y$.

b)
$$f(x,y) = \cos^2(2x - y^2)$$
.

c)
$$f(x, y, z) = x - \sqrt{y^2 + z^2}$$
.

d)
$$f(x, y, z) = 1/\sqrt{x^2 + y^2 + z^2}$$
.

Problem 3

Consider the function

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^4 + y^4} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0) \end{cases}$$

- a) Calculate the first partial derivatives f_x and f_y of f at (0,0) (use the limit definition for this).
- b) Calculate the first partial derivatives of f at all other points $(x, y) \neq (0, 0)$.
- c) Is the function f continuous at the origin?
- d) Is the function differentiable at the origin?

Problem 4

- a) Find the direction \vec{v} in which the function $f(x, y, z) = \sqrt{x^2 + xy + z^2}$ attains its maximal directional derivative at the point $(x_0, y_0, z_0) = (1, 4, 2)$. Make sure your answer is a unit vector.
- b) What is the maximal directional derivative of $f(x,y) = \sqrt{xy}$ at the point $(\sqrt{3},1)$?