Math 253A - Accelerated Calculus III

Homework sheet 9

To read: Section 14.2, 14.3, 14.4 in the book.

Problem 1

Find the volume of the solid that lies under $z=x \sqrt{x^{2}+y}$ and above the rectangle given by $0 \leq x \leq 4$ and $0 \leq y \leq 9$ in the $x y$ plane.

Problem $2(\S 14.2 \# 8,10)$ Integrate the function f over the given region Ω :
(a) the function $f(x, y)=x^{2}+y^{2}$ over the triangular region Ω with the vertices $(0,0),(1,0)$ and $(0,1)$.
(b) the function $f(x, y)=e^{x} \ln (y)$ over the region Ω in the $x y$-plane that lies between the curves $x=0$ and $x=\ln (y)$ from $y=1$ to $y=2$.

Problem 3 Sketch the region determined by the limits of integration and then give another iterated integral (or sum of iterated integrals) using the opposite order of integration.
(a)

$$
\int_{0}^{2} \int_{x}^{4-x} f(x, y) d y d x
$$

(b)

$$
\int_{1}^{2} \int_{\ln x}^{e^{x}} f(x, y) d y d x
$$

Problem 4 Find the volume of the solid enclosed by the surfaces $x^{2}+y^{2}+z=4, x^{2}+2 y^{2}-z=2$, $x=-1, x=1, y=-1$, and $y=1$.

