Math 253A - Accelerated Calculus III

Homework sheet 10

To read: Section 14.5, 14.6, 14.7 in the book.
Problem 1 (§14.4 \#24)
In polar coordinates, the average value of a function over a region R is given by

$$
\frac{1}{\operatorname{Area}(R)} \iint_{R} f(r, \theta) r d r d \theta
$$

Compute the average height of the cone $z=\sqrt{x^{2}+y^{2}}$ above the disk $R=\left\{(x, y): x^{2}+y^{2} \leq a^{2}\right\}$ with radius a in the $x y$-plane.

Problem 2

Sketch the solid region of integration for

$$
\int_{0}^{1}\left(\int_{y}^{1}\left(\int_{0}^{z} F(x, y, z) d x\right) d z\right) d y
$$

How many faces, corners and edges does it have? Write the iterated integral as five other iterated integrals.

Problem 3

Find the mass and center of mass of the solid D with density function $\delta(x, y, z)=y$ where D is the tetrahedron bounded by the planes $x=0, y=0, z=0$ and $x+y+z=1$.

Problem 4

Use cylindrical coordinates to evaluate the integral:

$$
\iiint_{D} z e^{x^{2}+y^{2}+z^{2}} d x d y d z
$$

where D is the portion of the unit ball $x^{2}+y^{2}+z^{2} \leq 1$ that lies in the first octant. (The first octant is the region where $x \geq 0, y \geq 0$ and $z \geq 0$)

