Math 253A - Accelerated Calculus III

Homework sheet 11

To read: Section 14.7, 14.8 in the book.

Problem 1

Find the mass and the center of mass of a brick occupying the region

$$
D=\{(x, y, z): 0 \leq x \leq 1,0 \leq y \leq 2,0 \leq z \leq 1\}
$$

with density function $\delta(x, y, z)=2+x y-2 z$. (Check Table 14.1 in the book for definitions)

Problem 2

Rewrite the integral

$$
\int_{-2}^{2}\left(\int_{0}^{\sqrt{4-y^{2}}}\left(\int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z\right) d x\right) d y
$$

using spherical coordinates and evaluate it.

Problem 3

Evaluate the double integral

$$
\iint_{R} \frac{x-y}{x+y} d x d y
$$

where R is the square with vertices $(0,2),(1,1),(2,2)$ and $(1,3)$.

Hint: an appropriate transformation to new coordinates s and t might simplify the calculations.

Problem 4

Use the transformation $x=s^{2}, y=t^{2}$ and $z=u^{2}$ to compute the volume of the region bounded by the surface $\sqrt{x}+\sqrt{y}+\sqrt{z}=1$ and the planes $x=0, y=0$ and $z=0$. What does the region look like in the stu space? Can you draw the original solid in the $x y z$ space?

