Math 253A - Accelerated Calculus III

Homework sheet 12

To read: Section 15.1, 15.2 in the book.

Problem 1

Let C be the boundary of the rectangle with vertices $(0,0),(1,0),(1,3)$ and $(0,3)$. The curve C consists of the four line segments

- C_{1} is the segment from $(0,0)$ to $(1,0)$,
- C_{2} is the segment from $(1,0)$ to $(1,3)$,
- C_{3} is the segment from $(1,3)$ to $(0,3)$,
- C_{4} is the segment from $(0,3)$ back to $(0,0)$.

Draw the curve C and parametrize the line segments C_{1}, C_{2}, C_{3} and C_{4}. Compute the line integral of the first kind

$$
\int_{C}(x+y+z) d s
$$

Problem 2

Find the mass and center of mass of a wire lying along a quartered circle $x^{2}+y^{2}=9$ in the first quadrant of the $x y$-plane (i.e. $x \geq 0, y \geq 0, z=0$) and having density $\delta(x, y, z)=5 x y$. (For the calculation, find first a suitable parametrization of the given curve)

Problem 3

Find the work done by the force field

$$
\mathbf{F}(x, y, z)=\left\langle x-y^{2}, y-z^{2}, z-x^{2}\right\rangle
$$

on a particle moving along the line segment from $(0,0,1)$ to $(2,1,0)$.

Problem 4

Determine the work integral $\int_{C} \mathbf{F} \cdot \mathbf{d r}$ where the force field \mathbf{F} is given by $\mathbf{F}(x, y, z)=3 x \mathbf{i}+3 y \mathbf{j}+3 z \mathbf{k}$ and the parametrization of the curve C is given by $\mathbf{r}(t)=\left\langle t^{2}+1, t^{2}-1, t^{2}-2 t\right\rangle$ with $0 \leq t \leq 2$.

