Math 253A - Accelerated Calculus III

Homework sheet 13

Due 04/25/2018

To read: Section 15.3, 15.4 in the book.

Problem 1

Let C be the boundary of the triangle with vertices (1,1), (2,0) and (1,3). The closed curve C consists of the three line segments

- C_1 is the segment from (1, 1) to (2, 0),
- C_2 is the segment from (2,0) to (1,3),
- C_3 is the segment from (1,3) to (1,1).

Draw the curve C and parametrize the line segments C_1 , C_2 and C_3 .

Compute the flux of the velocity field $\vec{\mathbf{F}}(x, y, z) = (x + y)\vec{\mathbf{i}} + (x^2 + y^2)\vec{\mathbf{j}}$ outward across the given triangle C.

Problem 2

- a) Use the component test to show that $\vec{\mathbf{F}}(x, y, z) = \frac{2x}{y}\vec{\mathbf{i}} + \frac{1-x^2}{y^2}\vec{\mathbf{j}} + \vec{\mathbf{k}}$ is a conservative vector field in the region $D = \{(x, y, z) : y > 0\}.$
- b) Find a potential function f for $\vec{\mathbf{F}}$.
- c) Determine the value of the work integral $\int_C \vec{\mathbf{r}}(\vec{\mathbf{r}}) \cdot d\vec{\mathbf{r}}$ along the line segment from (0, 1, 0) to (1, 2, 4).

Problem 3 Use Green's Theorem to evaluate the following line integrals.

- (a) Find $\oint_C \vec{\mathbf{F}}(\vec{\mathbf{r}}) \cdot \vec{\mathbf{dr}}$ where $\vec{\mathbf{F}}(x,y) = \sqrt{x^2 + 1} \vec{\mathbf{i}} + \tan^{-1} x \vec{\mathbf{j}}$ and C is the triangle from (0,0) to (1,1) to (0,1) to (0,0).
- (b) Find $\int_C \vec{\mathbf{F}}(\vec{\mathbf{r}}) \cdot \vec{\mathbf{dr}}$ where $\vec{\mathbf{F}}(x, y) = \langle e^{-x} + y^2, e^{-y} + x^2 \rangle$ and C is the arc of the curve $y = \cos x$ from $(-\pi/2, 0)$ to $(\pi/2, 0)$. (Note that this isn't a closed curve!)

Problem 4 Find the area of the region enclosed by the parameterized curve $\vec{\mathbf{r}}(t) = \langle t-t^2, t-t^3 \rangle$, $0 \le t \le 1$ (Green's theorem might be a useful tool for this). Try to graph the curve.