Math 253A - Accelerated Calculus III

Homework sheet 13

To read: Section 15.3, 15.4 in the book.

Problem 1

Let C be the boundary of the triangle with vertices $(1,1),(2,0)$ and $(1,3)$. The closed curve C consists of the three line segments

- C_{1} is the segment from $(1,1)$ to $(2,0)$,
- C_{2} is the segment from $(2,0)$ to $(1,3)$,
- C_{3} is the segment from $(1,3)$ to $(1,1)$.

Draw the curve C and parametrize the line segments C_{1}, C_{2} and C_{3}.
Compute the flux of the velocity field $\overrightarrow{\mathbf{F}}(x, y, z)=(x+y) \overrightarrow{\mathbf{i}}+\left(x^{2}+y^{2}\right) \overrightarrow{\mathbf{j}}$ outward across the given triangle C.

Problem 2

a) Use the component test to show that $\overrightarrow{\mathbf{F}}(x, y, z)=\frac{2 x}{y} \overrightarrow{\mathbf{i}}+\frac{1-x^{2}}{y^{2}} \overrightarrow{\mathbf{j}}+\overrightarrow{\mathbf{k}}$ is a conservative vector field in the region $D=\{(x, y, z): y>0\}$.
b) Find a potential function f for $\overrightarrow{\mathbf{F}}$.
c) Determine the value of the work integral $\int_{C} \overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{r}}) \cdot \overrightarrow{\mathbf{d r}}$ along the line segment from $(0,1,0)$ to $(1,2,4)$.

Problem 3 Use Green's Theorem to evaluate the following line integrals.
(a) Find $\oint_{C} \overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{r}}) \cdot \overrightarrow{\mathbf{d r}}$ where $\overrightarrow{\mathbf{F}}(x, y)=\sqrt{x^{2}+1} \overrightarrow{\mathbf{i}}+\tan ^{-1} x \overrightarrow{\mathbf{j}}$ and C is the triangle from $(0,0)$ to $(1,1)$ to $(0,1)$ to $(0,0)$.
(b) Find $\int_{C} \overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{r}}) \cdot \overrightarrow{\mathbf{d r}}$ where $\overrightarrow{\mathbf{F}}(x, y)=\left\langle e^{-x}+y^{2}, e^{-y}+x^{2}\right\rangle$ and C is the arc of the curve $y=\cos x$ from $(-\pi / 2,0)$ to $(\pi / 2,0)$. (Note that this isn't a closed curve!)

Problem 4 Find the area of the region enclosed by the parameterized curve $\overrightarrow{\mathbf{r}}(t)=\left\langle t-t^{2}, t-t^{3}\right\rangle$, $0 \leq t \leq 1$ (Green's theorem might be a useful tool for this). Try to graph the curve.

