Math 253A - Accelerated Calculus III

Homework sheet 14

To read: Section 15.5, 15.6 and 15.7 in the book.

Problem 1

Consider the spherical band S which is the portion of the sphere $x^{2}+y^{2}+z^{2}=4$ between the planes $z=-1$ and $z=\sqrt{3}$. Parameterize the surface S and compute the surface area of the spherical band S using a double integral.

Problem 2 Let the surface S be parametrized by $\overrightarrow{\mathbf{r}}(s, t)=\langle s, s+t, t\rangle, 0 \leq s \leq 1,0 \leq t \leq 2$. Find

$$
\iint_{S}\left(x^{2}+y^{2}+z^{2}\right) d \sigma
$$

Problem 3 Evaluate the surface integral

$$
\iint_{S} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{n}} d \sigma
$$

where $\overrightarrow{\mathbf{F}}(x, y, z)=\langle x, y, 2 z\rangle$, the surface S is the part of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the unit square $0 \leq x \leq 1,0 \leq y \leq 1$ and $\overrightarrow{\mathbf{n}}$ is the upward pointing unit normal vector to the surface S.

Problem 4 Use Stokes' Theorem to calculate

$$
\iint_{S} \operatorname{curl} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{n}} d \sigma
$$

where $\overrightarrow{\mathbf{F}}(x, y, z)=\langle-y, x, x y z\rangle$ and S is the part of the sphere $x^{2}+y^{2}+z^{2}=25$ that lies below the plane $z=4$, oriented so that the unit normal vector at the south pole $(0,0,-5)$ is $\langle 0,0,-1\rangle$.

