Evaluation Formulas and Theorems

All curves and surfaces are assumed to be (piecewise) smooth; all vector fields are assumed to be smooth.

Line Integrals

Setup: C an oriented curve, \vec{F} a vector field

Evaluation formula: \[\int_C \vec{F} \cdot \vec{T} \, ds = \int_{t=a}^{t=b} \vec{F}(t) \cdot \vec{v}(t) \, dt, \]

where $\vec{v}(t)$ is the velocity of a smooth parametrization $\vec{r}(t)$ of C with domain $a \leq t \leq b$.

Surface Integrals

Setup: S an oriented surface, \vec{F} a vector field

Evaluation formula: \[\iint_S \vec{F} \cdot \vec{n} \, dS = \iint_D \vec{F}(u,v) \cdot (r_u(u,v) \times r_v(u,v)) \, dA(u,v), \]

where $\vec{r}(u,v)$ is an oriented smooth parametrization of S with domain D, that is, $\vec{r}(u,v)$ is a smooth parametrization of S for which the vector $r_u(u,v) \times r_v(u,v)$ has the same direction as the given orientation vector \vec{n}.

Green’s Theorem

Setup: C a simple closed curve, the boundary of a region D in the plane, C oriented counterclockwise, $\vec{F} = \langle P, Q \rangle$ a vector field

Green’s Theorem (primitive form): \[\oint_C P \, dx + Q \, dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA \]

Green’s Theorem (flow form): \[\int_C \vec{F} \cdot \vec{T} \, ds = \iint_D \left(\nabla \times \vec{F} \right) \cdot \vec{k} \, dA \]

Green’s Theorem (flux form): \[\int_C \vec{F} \cdot \vec{n} \, ds = \iint_D \nabla \cdot \vec{F} \, dA, \]

where \vec{n} is the unit normal vector on C pointing out of D.

Stokes’ Theorem

Setup: S a surface with boundary curve C, S and C are compatibly oriented, \vec{F} a vector field

Stokes’ Theorem: \[\iint_S \left(\nabla \times \vec{F} \right) \cdot \vec{n} \, dS = \oint_C \vec{F} \cdot \vec{T} \, ds \]

Divergence Theorem

Setup: E a solid region in space with boundary surface S, S oriented outward from E, \vec{F} a vector field

Divergence Theorem: \[\iiint_E \nabla \cdot \vec{F} \, dV = \iint_S \vec{F} \cdot \vec{n} \, dS \]

Note: The theorems, suitably interpreted, remains true for more general regions and curves.