HOMEWORK: OPERATORS

Unbounded functionals: Let H be a separable infinite dimensional Hilbert space. ‘Construct’ an unbounded linear functional $H \to \mathbb{C}$. Hint: an honest vector space basis of H is uncountable.

Infinite matrices: Show that the infinite matrix
\[
\begin{pmatrix}
t_1 & 0 & \ldots \\
0 & t_2 & \ldots \\
\vdots & \vdots & \ddots
\end{pmatrix},
\]
defines, by ordinary matrix multiplication, a bounded linear operator on $\ell^2(\mathbb{N}) \iff \sup |t_i| < \infty$; in which case this supremum is the norm of the operator. More generally, suppose the infinite matrix
\[
\begin{pmatrix}
t_{11} & t_{12} & \ldots \\
t_{21} & t_{22} & \ldots \\
\vdots & \vdots & \ddots
\end{pmatrix}
\]
satisfies the following condition: there exists constants α and β such that
\[(a) \sum_i |t_{ij}| \leq \alpha \text{ for every } j
(b) \sum_j |t_{ij}| \leq \beta \text{ for every } i.
\]
Then (t_{ij}) defines, by ordinary matrix multiplication, a bounded operator on $\ell^2(\mathbb{N})$ of norm not greater than $\sqrt{\alpha \beta}$. This is called the Schur test.

Operators and sesquilinear forms: Let H be a Hilbert space. A sesquilinear form on H is a function

$$(\cdot, \cdot) : H \times H \to \mathbb{C}$$

that is linear in the first variable and conjugate linear in the second variable. A sesquilinear form is bounded if there exists a constant C such that

$$|(x, y)| \leq C \|x\|\|y\|,$$

for all $x, y \in H$; in this case, the norm of the functional is the infimum over all C for which the inequality is satisfied. Prove:

(a) if T is a bounded operator then $(x, y) = \langle T(x), y \rangle$ is a bounded sesquilinear form; its norm is the operator norm of T

(b) every bounded sesquilinear form arises from a bounded operator via the construction in (a)

Sesquilinear forms behave like inner products.

(c) formulate and prove a polarization rule for sesquilinear forms

(d) prove that if (\cdot, \cdot) and $[\cdot, \cdot]$ are sesquilinear forms and if $(x, x) = [x, x]$ for all $x \in H$ then $(x, y) = [x, y]$ for all $x, y \in H$

A sesquilinear form is positive if $(x, x) \geq 0$ for all $x \in H$.

(e) formulate and prove a Cauchy-Schwarz inequality for positive sesquilinear forms
Strong operator topology: Let H be a Hilbert space, and let $\mathcal{B}(H)$ be the collection of bounded operators on H. Let

$$U(T; x_1, \ldots, x_n; \varepsilon) = \{ S \in \mathcal{B}(H) : \|Tx_i - Sx_i\| < \varepsilon, \text{ for } i = 1, 2, \ldots, n \}.$$

Verify the following:

(a) the collection of $U(T; x_1, \ldots, x_n; \varepsilon)$ as T, x_i and ε vary, are the basis of a topology on $\mathcal{B}(H)$

(b) the collection of $U(T; x_1, \ldots, x_n; \varepsilon)$ as x_i and ε vary, are a neighborhood basis at $T \in \mathcal{B}(H)$

(c) a net T_λ converges to T in this topology $\iff T_\lambda(x)$ converges to $T(x)$ for every $x \in H$

This topology is the **strong operator topology**. NB: this problem is not stated very well – be careful with ‘basis’ and ‘basis at T', etc.

The strong operator topology is metrizable when restricted to bounded subsets of $\mathcal{B}(H)$ if and only if H is separable. The strong operator topology is *not* metrizable on all of $\mathcal{B}(H)$, even when H is separable.

The unitary group: Let H be a Hilbert space. Show that the collection of unitary operators on H, denoted $\mathcal{U}(H)$, form a group. Show that the group operations

$$U \mapsto U^{-1} : \mathcal{U}(H) \to \mathcal{U}(H)$$

$$(U, V) \mapsto UV : \mathcal{U}(H) \times \mathcal{U}(H) \to \mathcal{U}(H)$$

are continuous when $\mathcal{U}(H)$ is given the strong operator topology. Succinctly stated, $\mathcal{U}(H)$ is a **topological group** when given the strong operator topology.

Prove that the adjoint is *not* continuous for the strong operator topology as a map $\mathcal{B}(H) \to \mathcal{B}(H)$. Nevertheless, it *is* continuous for the strong operator topology as a map $\mathcal{U}(H) \to \mathcal{U}(H)$, as you are asked to prove above.

Invertibility: A bounded operator T on H is **invertible** if there exists a bounded operator S on H such that $ST = 1 = TS$; the S satisfying this condition is unique, and is denoted T^{-1}. Prove that T is invertible \iff both of the following hold:

(a) T is bounded below: $\exists C > 0$ such that $\forall x \in H$ we have $\|T(x)\| \geq C\|x\|$

(b) T is densely onto: $\text{ran}(T) = H$

Hint: By the Bounded Inverse Theorem (or Closed Graph Theorem if you prefer) an operator is invertible \iff it is injective and surjective. For each of the following either give an example or prove there is no such example:

(c) $\ker(T) = 0$ but T is not bounded below

(d) T is bounded below but $\ker(T) \neq 0$

(e) T is bounded below, but not densely onto

(f) T is bounded below, densely onto but not onto

Thinking about the examples may help with the first part of the problem.