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Abstract. The Schrodinger equation is a fundamental postulate of quantum mechanics that pro-

vides insight on the probabilistic density, energy, position and momentum of a particle for which

classical Newtonian mechanics fails. The time-independent Schrodinger equation and its application

to the one-dimensional particle in a box are discussed.

1. What is the Schrodinger Equation?

The classical mechanics of Newton fails in adequately describing the behavior of very small
objects, such as an electron in an atom. There is a fundamental restriction to how well one can
simultaneously measure an object’s position and velocity, and this is described by the Heisenberg
Uncertainty Principle: For a moving object confined to region ∆x with uncertainty of linear
momentum ∆p:

∆x∆px ≈ h

for Planck’s constant h = 6.626×10−34J · s In essence, the Heisenberg Uncertainty Principle states
that the position and momentum of a particle cannot be simultaneously and exactly known.

Quantum mechanics, however, provides remarkably accurate descriptions of small-scale phenom-
ena. According to quantum mechanics, a quantum state of a particle at stationary time is a
complex-valued function ψ(x, y, z), defined on R3. This complex-valued function is known as the
Schrondinger wave function. Wave functions must be well-behaved (i.e. finite, single-valued,
and continous).

The state ψ is normalizable if the integral of the square of the modulus of ψ over R3 is finite
and nonzero.

‖ ψ ‖2≡
∫
|ψ(x, y, z)|2dxdydz

ψ is said to be normalized when ‖ψ‖2 = 1. |ψ(x, y, z)|2 is the probability density of possible
positions of the particle. For a normalized state ψ, the probability the particle is in any given
region A is

∫
|ψ|2dxdydz, a value between 0 and 1. If A is R3, the integral is 1 and the probability

must be 100% over all space (e.g. the particle is found somewhere in R3). In addition to providing
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information about probability densities, the state ψ can also be used to find energies, position and
angular momentum.

A quantum state with a definite energy E (kinetic energy plus potential energy) satisfies the
partial differential equation:

−~2

2m
∇ψ + U(x)ψ =

[
−~2

2m
∇+ U(x)

]
ψ = Eψ

is known as the Time-Independent Schrodinger equation where m is the mass of the object,
∇ is the Laplacian Operator, and ~ = h

2π .
The Schrodinger equation can be formulated as an eigenvalue problem where ψ is an eigenfunction

of the Hamiltonian operator −~2

2m ∇+ U(x), and the energy E is the associated eigenvalue.
There is a time-dependent Schrodinger equation:[

−~2

2m
∇+ U(x)

]
ψ(x, t) = ı~

∂ψ

∂t

The time-dependent Schrodinger equation is a much more complicated function, and so we will
discuss only the time-independent Schrodinger equation.

2. An Attempt to Derive the Schrodinger Equation

The Schrodinger equation is a fundamental postulate of quantum mechanics, and cannot be
derived. However we can try to trace Schrodinger’s original line of thought.

DeBroglie showed that matter has both particle and wavelike properties (duality of particle and
wave). If matter possesses wavelike properties, then it should be governed by some wave equation.
For simplicity, we begin with the wave equation in one-dimension:

∂2u

∂x2
=

1
v2

∂2u

∂t2

We know that the wave equation can be solved by the method of separation of variables, and
u(x, t) can be written as the product of a function of x and a sinusoidal function of time:

u(x, t) = ψ(x) cos(wt)

where ψ(x) is the spatial factor of the amplitude u(x, t). If u(x, t) is substituted into the wave
equation, we obtain the partial differential equation (PDE):

∂2ψ

∂x2
+
w2

v2
ψ = 0

For a particle of mass m and velocity v,

E = KE + PE =
1
2
mv2 + U(x) =

p2

2m
+ U(x)

where KE is the kinetic energy, PE is the potential energy, and momentum p = mv. Solving for p,
we obtain: p = [2m (E − U)]

1
2 .
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We can simplify the w2

v2
term in the above to:

ω2

υ2
=

4π2

λ2
= 4π2 p

2

h2
=

2m (E − U)
~2

where the angular frequency ω = 2πν, velocity υ = νλ, and the DeBroglie wavelength λ = h
p .

Substituting these values into the PDE above, we obtain:

∂2ψ

∂x2
+
[
2m
~2

(E − U)
]
ψ = 0

Rearrangement of this equation gives the time-independent Schrodinger equation in one-dimension:

−~2

2m
∂2ψ

∂x2
+ Uψ = Eψ

3. Application: One-Dimensional Free Particle in a Box

DE : −~2

2m
∂2ψ
∂x2 + Uψ = Eψ

BC : ψ(0) = 0, ψ(a) = 0
Outside the box: U = ∞ and ψ = 0

−~2

2m
∂2ψ

∂x2
+∞ψ = Eψ

−~2

2m
∂2ψ

∂x2
= −∞ψ

∴ ψ =
1
∞
−~2

2m
∂2ψ

∂x2
= 0

(i.e. ψ = 0 when U(x) = ∞ and the particle is never found outside the box)
Inside the box: U = 0

−~2

2m
∂2ψ

∂x2
+ 0ψ = Eψ

−~2

2m
∂2ψ

∂x2
− Eψ = 0
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Let a=−~2

2m .

a
∂2ψ

∂x2
− Eψ = 0

Let ψ = er.

a(r2er)− Eer = 0

ar2 − E = 0

r = ±
√

4aE
2a

= ±
√
c

a

∴ r = ±
√

E
−~2

2m

= ±
√
−2mE

~2
= ±ι

√
2mE
~2

ψ = A cos(kx) +B sin(kx)

where k =
√

2mE
~2 and constants A, B.

To find the constants A and B, we apply the boundary conditions of the problem.

ψ(0) = A cos(k0) +B sin(k0) = A+B · 0 = A = 0.

∴ A = 0

ψ(a) = 0 cos(ka) +B sin(ka) = B sin(ka) = 0 only if ka = nπ.
If B=0, we would get the trivial solution.

∴ k =
nπ

a
, ψ = B sin

(nπx
a

)
for n = 1, 2, 3, . . .

Since ψ must be normalizable, we can find the value of the constant B.∫ a

0
ψ?ψdx =

∫ a

0
B2(sin

(nπx
a

)
)2
dx

= B2

∫ a

0
(sin

(nπx
a

)2
dx

= B2

∫ a

0

[
1
2
− 1

2
cos
(

2nπx
a

)]
dx

= B2

[
x

2
− a

4nπx
sin
(

2nπx
a

)]a
0

= B2
[x
2

]a
0

=
aB2

2
= 1

=⇒ B =

√
2
a
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Hence, ψn =
√

2
a sin

(
nπx
a

)
for n = 1, 2, 3, . . ..

The energy eigenvalue E can be found by equating the values for k as defined earlier:

k =
nπ

a
=

√
2mE
~2

=⇒
(nπ
a

)2
=

2mE
~2

Solving for E, we obtain for n = 1, 2, 3, . . .

En =
n2π2~2

2ma2
=

n2h2

8ma2

i.e. the energy of a particle in a box is quantized and discrete energy levels exist.
The wave function for the first few states are plotted in figure 1 [3]:
Ground state (n = 1)

ψ1 =

√
2
a

sin
(πx
a

)
, E1 =

h2

8ma2

First excited state (n = 2)

ψ2 =

√
2
a

sin
(

2πx
a

)
, E2 =

4h2

8ma2

Second excited state (n = 3)

ψ3 =

√
2
a

sin
(

3πx
a

)
, E3 =

9h2

8ma2

Figure 1. The particle-in-a-box wavefunctions (left) and probability densities
(right) for n = 1, 2, 3, 4.
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Recall, |ψ(x, y, z)|2 is the probability density. When |ψ(x, y, z)|2 = 0, it is called a NODE. The
number of nodes in this system is n− 1. The second derivative describes curvature. Wavefunctions
with higher curvature indicate a higher kinetic energy of the particle.

The energy diagram in figure 2 shows that the system has discrete energy levels. E decreases as
a increases. ∆E = En − En−1 increases with n, but decreases as a increases.

4. Higher dimensions of Free Particle in a Box

The same technique can be applied to higher dimensions (e.g. 2-D, 3-D box) with the method
of separation of variables.

For the two-dimensional particle in a box, let ψ = XY . Then the PDE becomes:

−~2

2m

(
∂2

∂x2
+

∂2

∂y2

)
XY = EXY

Divide through by XY to separate variables:(
−~2

2m
1
x

∂2

∂x2

)
+
(
−~2

2m
1
y

∂2

∂y2

)
= Ex + Ey = E

Applying the same techniques as above, we obtain for the 2-D case:

X =

√
2
a

sin
nxπx

a
, Y =

√
2
b

sin
nyπy

b

∴ ψ = XY =

√
4
ab

sin
nxπx

a
sin

nyπy

b
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E = Ex + Ey =
n2
xh

2

8ma2
+
n2
yh

2

8mb2
=

h2

8m

(
n2
x

a2
+
n2
y

b2

)
In general,

Hamiltonian Operator =
−~2

2m
∇2

ψ =
∏
i

ψi

E =
∑
i

Ei
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