Problem 7.4 (2 points)

We are given an observable random variable that is normally distributed with standard deviation \(\sigma = 4\) square inches. Thus \[\begin{align*} P(-1 \le \overline{Y} - \mu \le 1) &= P\left( -\frac{\sqrt{n}}{4} \le \sqrt{n}\frac{\overline{Y} - \mu}{\sigma} \le \frac{\sqrt{n}}{4} \right) \\ &= P\left( -\frac{\sqrt{n}}{4} \le Z \le \frac{\sqrt{n}}{4} \right) \\ &= 0.90 \end{align*}\]

is satisfied for \(\sqrt{n}/4 = z_{0.05} \doteq 1.645\), or \(n \doteq [(4)(1.645)]^2\doteq 43.30\). Since \(n\) must be an integer, we may take \(n=44\) to guarantee that the probability is at least \(0.90\).

Problem 7.8 (2 points)

Let \(X = \overline{Y}_A - \overline{Y}_B\). We are given \(E[Y_A] = E[Y_B]\), and \(V[Y_A] = 0.4\), \(V[Y_B] = 0.8\), and \(n_A = n_B = 10\). Then \(E[X] = 0\) and \(V[X] = (0.4/10) + (0.8/10) = 0.12\). Thus, \[\begin{align*} P(\overline{Y}_A > \overline{Y}_B + 1) &= P(X > 1) \\ &= P(X/\sqrt{0.12} > 1/\sqrt{0.12}) \\ &\doteq P(Z > 2.89) \\ &\doteq 0.0019. \end{align*}\]

Problem 7.10 (4 points)

  1. Let \(U\) have a \(\chi^2\) distribution with \(\nu\) degrees of freedom. Then \(U\) has a Gamma distribution with parameters \(\alpha=\nu/2\) and \(\beta=2\). Thus (see Theorem 4.8) \[\begin{align*} E[U] &= \alpha \beta = \nu, \\ V[U] &= \alpha \beta^2 = 2\nu. \end{align*}\]
  2. \(U = (n-1) S^2 / \sigma^2\) has a \(\chi^2\) distribution with \((n-1)\) degrees of freedom. Thus, \[\begin{align*} E[S^2] &= E\left[\frac{\sigma^2}{(n-1)} U \right] = \frac{\sigma^2}{(n-1)} E[U] = \frac{\sigma^2}{(n-1)} (n - 1) = \sigma^2, \\ V[S^2] &= V\left[\frac{\sigma^2}{(n-1)} U \right] = \frac{\sigma^4}{(n-1)^2} V[U] \\ &= \frac{\sigma^4}{(n-1)^2} 2 (n - 1) = \frac{2\sigma^4}{(n-1)}. \end{align*}\]

Problem 7.12 (2 points)

We are given \(n=9\), thus \[ T = \sqrt{9}\cdot\frac{\overline{Y} - \mu}{S} \] has a \(t\)-distribution with \(\nu=8\) degrees of freedom. Since \[ P( -t_{0.05,8} \le T \le t_{0.05,8}) = 0.90 \] and \(t_{0.05,8} \doteq 1.86\) we see that \[ P\left( -\frac{t_{0.05,8}}{\sqrt{9}}\cdot S \le \overline{Y} - \mu \le \frac{t_{0.05,8}}{\sqrt{9}}\cdot S\right) = 0.90, \] so we may take \[\begin{align*} g_1 &= -\frac{t_{0.05,8}}{\sqrt{9}}\cdot S \doteq -0.620\cdot S \\ g_2 &= \frac{t_{0.05,8}}{\sqrt{9}}\cdot S \doteq 0.620\cdot S. \end{align*}\]

Problem 7.14 (4 points)

  1. \(E[Z]=0\), \(E[Z^2] = V[Z] + E[Z]^2 = 1 + 0^2 = 1\).
  2. \(T = \sqrt{\nu}\cdot Z\cdot Y^{-1/2}\). By problem 4.90, if \(\nu>1\) then \(E[Y^{-1/2}]\) exists. Since \(Z\) and \(Y\) are independent, if \(\nu>1\) then \[ E[T] = \sqrt{\nu}\cdot E[Z]\cdot E[Y^{-1/2}] = \sqrt{\nu}\cdot 0\cdot E[Y^{-1/2}] = 0. \] By problem 4.90, if \(\nu > 2\) then \(E[Y^{-1}] = 1/(\nu - 2)\). Thus, for \(\nu > 2\) \[\begin{align*} V[T] &= E[T^2] - E[T]^2 = E[T^2] - 0^2 = E[T^2] \\ &= E[\nu\cdot Z^2\cdot Y^{-1}] \\ &= \nu\cdot E[Z^2]\cdot E[Y^{-1}] \qquad\text{(since \(Z\) and \(Y\) are independent)} \\ &= \nu\cdot 1 \cdot \frac{1}{\nu-2} \\ &= \frac{\nu}{\nu -2}. \end{align*}\] Therefore, if \(\nu>2\) then a \(t\)-distributed random variable with \(\nu\) degrees of freedom has mean 0 and variance \(\nu/(\nu-2)\).

Problem 7.16 (4 points)

Let \(W_1\) and \(W_2\) be independent \(\chi^2\) distributed random variables with \(\nu_1\) and \(\nu_2\) degrees of freedom, respectively. Let \[ F = \frac{W_1/\nu_1}{W_2/\nu_2} = \nu_2\cdot \nu_1^{-1}\cdot W_1\cdot W_2^{-1}. \]
  1. By problem 4.90, if \(\nu_2 > 2\) then \(E[W_2^{-1}] = 1/(\nu_2 - 2)\). Since expected value is linear and since \(W_1\) and \(W_2\) are independent random variables, \[\begin{align*} E[F] &= E[\nu_2\cdot \nu_1^{-1}\cdot W_1\cdot W_2^{-1}] \\ &= \nu_2\cdot \nu_1^{-1}\cdot E[W_1]\cdot E[W_2^{-1}] \\ &= \nu_2\cdot \nu_1^{-1}\cdot \nu_1\cdot \frac{1}{\nu_2 - 2} \\ &= \frac{\nu_2}{\nu_2 -2}. \end{align*}\]
  2. By problem 4.90, \(E[W_1^2]=\nu_1\cdot(\nu_1+2)\), and if \(\nu_2 > 4\) then \(E[W_2^{-2}] = 1/[(\nu_2 - 2)(\nu_2-4)]\). Since expected value is linear and since \(W_1\) and \(W_2\) are independent random variables, \[\begin{align*} E[F^2] &= E[\nu_2^2\cdot \nu_1^{-2}\cdot W_1^2\cdot W_2^{-2}] \\ &= \nu_2^2\cdot \nu_1^{-2}\cdot E[W_1^2]\cdot E[W_2^{-2}] \\ &= \nu_2^2\cdot \nu_1^{-2}\cdot \nu_1\cdot(\nu_1+2)\cdot \frac{1}{(\nu_2 - 2)\cdot(\nu_2 - 4)} \\ &= \frac{\nu_2^2\cdot(\nu_1 + 2)}{\nu_1\cdot(\nu_2 -2)\cdot(\nu_2 - 4)}. \end{align*}\] Finally, the variance of \(F\) is \(V[F] = E[F^2] - E[F]^2\) which is, after simplification, \[ V[F] = \frac{2\cdot\nu_2^2\cdot(\nu_1 + \nu_2 -2)}{\nu_1\cdot (\nu_2 - 2)^2\cdot(\nu_2 - 4)}. \]

Problem 7.24 (2 points)

We are given that the population standard deviation is \(\sigma = 2.5\) inches. We are trying to find a sample size \(n\) so that \(P( |\overline{Y} - \mu | \le 0.4) \ge 0.95\). This is equivalent to the condition \[ P\left(-\frac{0.4\cdot \sqrt{n}}{2.5} \le \sqrt{n}\cdot\frac{\overline{Y} - \mu}{\sigma} \le \frac{0.4\cdot \sqrt{n}}{2.5}\right) \ge 0.95. \] For a large enough sample size, \(\sqrt{n}\cdot (\overline{Y}-\mu)/\sigma\) is well approximated by the standard normal random variable \(Z\). Recall that \(z_{\alpha}\) is the number defined by the property \(P(Z \ge z_{\alpha}) = \alpha\), where \(0<\alpha<1\). Since \(P(-z_{0.025} \le Z \le z_{0.025}) = 0.95\), and since \(z_{0.025}\doteq 1.96\), our estimated \(n\) should satisfy \(0.4\cdot\sqrt{n}/2.5 \ge 1.96\), so it suffices to take \[ n \ge (1.96\cdot 2.5 / 0.4)^2 \doteq (12.25)^2 \doteq 150.06. \] We will take \(n=151\).

Problem 7.26 (2 points)

We are given a sample size of \(n=40\) and we are given that the range for pH is \(8-5=3\), therefore we can estimate the standard deviation by \(\sigma \doteq 3/4 = 0.75\). Using the estimate provided by the central limit theorem, we calculate \[\begin{align*} P(| \overline{Y} - \mu | \le 0.2) &= P\left( -\frac{0.2\cdot \sqrt{40}}{\sigma} \le \sqrt{40}\cdot \frac{\overline{Y} - \mu}{\sigma} \le \frac{0.2\cdot \sqrt{40}}{\sigma} \right) \\ &\doteq 1 - 2\cdot P( Z \ge 0.2\cdot \sqrt{40}/\sigma) \\ &\doteq 1 - 2\cdot P( Z \ge 0.2\cdot \sqrt{40}/0.75) \\ &\doteq 1 - 2\cdot P( Z \ge 1.69 ) \\ &\doteq 1 - 2\cdot 0.0455 \\ &\doteq 0.909. \end{align*}\]

Problem 7.36 (2 points)

We are given a random sample \(Y_1, Y_2, \dotsc, Y_{50}\), where \(E[Y_i]=\mu\) and \(V[Y_i] = \sigma^2 \doteq 4\). We want to find \(\mu\) so that \(P(\sum_{i=1}^{50} Y_i > 200) \doteq 0.95\). This is equivalent to the condition \(P(\overline{Y} > 4) \doteq 0.95\) since \(\sum_{i=1}^{50} Y_i = 50\cdot \overline{Y}\). If we suppose that \(\overline{Y}\) is approximately normal, then \(\sqrt{50}\cdot (\overline{Y} - \mu)/2\) is approximated by the standard normal random variable \(Z\). Thus, \(P(\overline{Y} > 4)\) is estimated by \(P(Z > \sqrt{50} \cdot (4 - \mu)/2)\). Since \(P(Z > -1.645) \doteq 0.95\), we see that the desired estimate for \(\mu\) is obtained by solving the equation \((4 - \mu)/2 \doteq -1.645\). This yields \(\mu \doteq 4 + 2\cdot 1.645/\sqrt{50} \doteq 4.465\).

Problem 7.38 (2 points)

We are given independent random samples \(X_1, \dotsc, X_n\) and \(Y_1, \dotsc, Y_n\) from populations with means \(\mu_1\) and \(\mu_2\), and variances \(\sigma_1^2\) and \(\sigma_2^2\), respectively. Define the random variables \(W_1, \dotsc, W_n\) by \(W_i = X_i - Y_i\), \(i=1, \dotsc, n\). The \(W_i\) are clearly independent and identically distributed, \(E[W_i] = \mu_1 - \mu_2\), \(V[W_i] = \sigma_1^2 + \sigma_2^2\), \(i=1, \dotsc, n\). The hypotheses of Theorem 7.4 are satisfied, so the distribution function for \[ U_n = \frac{\overline{W} - (\mu_1 - \mu_2)}{\sqrt{(\sigma_1^2 + \sigma_2^2)/n}} = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{(\sigma_1^2 + \sigma_2^2)/n}} \] converges, as \(n\rightarrow\infty\), to the distribution function for the standard normal random variable.

Problem 7.40 (2 points)

\[\begin{align*} P( |(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)| \le 0.05 ) &= P\left(\left|\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}}\right| \le \frac{0.05}{\sqrt{(0.01/50) + (0.02/100)}}\right) \\ &\doteq P( |Z| \le 2.50 ) = 1 - 2\cdot P(Z \ge 2.50) \\ &\doteq 1 - 2\cdot 0.0062 \\ &\doteq 0.9876. \end{align*}\]

Problem 7.42 (2 points)

We are given a population mean \(\mu=2.5\) minutes and standard deviation \(\sigma = 2\) minutes. In a random sample of size \(n=100\), we want to estimate \[\begin{align*} P\left(\sum_{i=1}^{100} Y_i > 240\right) &= P\left(\overline{Y} > 2.4\right) \\ &= P\left(\sqrt{n}\cdot \frac{\overline{Y} - \mu}{\sigma} > \sqrt{100}\cdot\frac{2.4 - 2.5}{2} \right) \\ &\doteq P(Z > -0.5) = 1 - P(Z > 0.5) \\ &\doteq 1 - 0.3085 = 0.6915. \end{align*}\]
LS0tCnRpdGxlOiAiU29sdXRpb25zIHRvIEhvbWV3b3JrIEFzc2lnbm1lbnQgMiIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKIyMgUHJvYmxlbSA3LjQgKDIgcG9pbnRzKQpXZSBhcmUgZ2l2ZW4gYW4gb2JzZXJ2YWJsZSByYW5kb20gdmFyaWFibGUgdGhhdCBpcyBub3JtYWxseSBkaXN0cmlidXRlZCB3aXRoIHN0YW5kYXJkIGRldmlhdGlvbiBcKFxzaWdtYSA9IDRcKSBzcXVhcmUgaW5jaGVzLiBUaHVzClxiZWdpbnthbGlnbip9CiAgUCgtMSBcbGUgXG92ZXJsaW5le1l9IC0gXG11IFxsZSAxKSAKICAmPSBQXGxlZnQoCiAgLVxmcmFje1xzcXJ0e259fXs0fQogIFxsZSBcc3FydHtufVxmcmFje1xvdmVybGluZXtZfSAtIFxtdX17XHNpZ21hfQogIFxsZSBcZnJhY3tcc3FydHtufX17NH0KICBccmlnaHQpIFxcCiAgJj0gUFxsZWZ0KAogIC1cZnJhY3tcc3FydHtufX17NH0KICBcbGUgWgogIFxsZSBcZnJhY3tcc3FydHtufX17NH0KICBccmlnaHQpIFxcCiAgJj0gMC45MApcZW5ke2FsaWduKn0KaXMgc2F0aXNmaWVkIGZvciBcKFxzcXJ0e259LzQgPSB6X3swLjA1fSBcZG90ZXEgMS42NDVcKSwgb3IgXChuIFxkb3RlcSBbKDQpKDEuNjQ1KV1eMlxkb3RlcSA0My4zMFwpLiBTaW5jZSBcKG5cKSBtdXN0IGJlIGFuIGludGVnZXIsIHdlIG1heSB0YWtlIFwobj00NFwpIHRvIGd1YXJhbnRlZSB0aGF0IHRoZSBwcm9iYWJpbGl0eSBpcyBhdCBsZWFzdCBcKDAuOTBcKS4KCiMjIFByb2JsZW0gNy44ICgyIHBvaW50cykKTGV0IFwoWCA9IFxvdmVybGluZXtZfV9BIC0gXG92ZXJsaW5le1l9X0JcKS4gV2UgYXJlIGdpdmVuIFwoRVtZX0FdID0gRVtZX0JdXCksIGFuZCBcKFZbWV9BXSA9IDAuNFwpLCBcKFZbWV9CXSA9IDAuOFwpLCBhbmQgXChuX0EgPSBuX0IgPSAxMFwpLiBUaGVuIFwoRVtYXSA9IDBcKSBhbmQgXChWW1hdID0gKDAuNC8xMCkgKyAoMC44LzEwKSA9IDAuMTJcKS4gVGh1cywKXGJlZ2lue2FsaWduKn0KICBQKFxvdmVybGluZXtZfV9BID4gXG92ZXJsaW5le1l9X0IgKyAxKQogICY9IFAoWCA+IDEpIFxcCiAgJj0gUChYL1xzcXJ0ezAuMTJ9ID4gMS9cc3FydHswLjEyfSkgXFwKICAmXGRvdGVxIFAoWiA+IDIuODkpIFxcCiAgJlxkb3RlcSAwLjAwMTkuClxlbmR7YWxpZ24qfQoKIyMgUHJvYmxlbSA3LjEwICg0IHBvaW50cykKPG9sIHR5cGU9ImEiPgo8bGk+CkxldCBcKFVcKSBoYXZlIGEgXChcY2hpXjJcKSBkaXN0cmlidXRpb24gd2l0aCBcKFxudVwpIGRlZ3JlZXMgb2YgZnJlZWRvbS4gVGhlbiBcKFVcKSBoYXMgYSBHYW1tYSBkaXN0cmlidXRpb24gd2l0aCBwYXJhbWV0ZXJzIFwoXGFscGhhPVxudS8yXCkgYW5kIFwoXGJldGE9MlwpLiBUaHVzIChzZWUgVGhlb3JlbSA0LjgpClxiZWdpbnthbGlnbip9CiAgICBFW1VdICY9IFxhbHBoYSBcYmV0YSA9IFxudSwgXFwKICAgIFZbVV0gJj0gXGFscGhhIFxiZXRhXjIgPSAyXG51LgpcZW5ke2FsaWduKn0KPC9saT4KPGxpPgpcKFUgPSAobi0xKSBTXjIgLyBcc2lnbWFeMlwpIGhhcyBhIFwoXGNoaV4yXCkgZGlzdHJpYnV0aW9uIHdpdGggXCgobi0xKVwpIGRlZ3JlZXMgb2YgZnJlZWRvbS4gVGh1cywKXGJlZ2lue2FsaWduKn0KICBFW1NeMl0gJj0gCiAgRVxsZWZ0W1xmcmFje1xzaWdtYV4yfXsobi0xKX0gVSBccmlnaHRdID0KICBcZnJhY3tcc2lnbWFeMn17KG4tMSl9IEVbVV0gPQogIFxmcmFje1xzaWdtYV4yfXsobi0xKX0gKG4gLSAxKSA9CiAgXHNpZ21hXjIsIFxcCiAgVltTXjJdICY9IAogIFZcbGVmdFtcZnJhY3tcc2lnbWFeMn17KG4tMSl9IFUgXHJpZ2h0XSA9CiAgXGZyYWN7XHNpZ21hXjR9eyhuLTEpXjJ9IFZbVV0gXFwKICAmPQogIFxmcmFje1xzaWdtYV40fXsobi0xKV4yfSAyIChuIC0gMSkgPQogIFxmcmFjezJcc2lnbWFeNH17KG4tMSl9LgpcZW5ke2FsaWduKn0KPC9saT4KPC9vbD4KCiMjUHJvYmxlbSA3LjEyICgyIHBvaW50cykKV2UgYXJlIGdpdmVuIFwobj05XCksIHRodXMKXFsKVCA9IFxzcXJ0ezl9XGNkb3RcZnJhY3tcb3ZlcmxpbmV7WX0gLSBcbXV9e1N9ClxdCmhhcyBhIFwodFwpLWRpc3RyaWJ1dGlvbiB3aXRoIFwoXG51PThcKSBkZWdyZWVzIG9mIGZyZWVkb20uIFNpbmNlClxbClAoIC10X3swLjA1LDh9IFxsZSBUIFxsZSB0X3swLjA1LDh9KSA9IDAuOTAKXF0KYW5kIFwodF97MC4wNSw4fSBcZG90ZXEgYHIgcm91bmQocXQoLjA1LGRmPTgsbG93ZXIudGFpbD1GQUxTRSksMylgXCkgd2Ugc2VlIHRoYXQKXFsKUFxsZWZ0KCAtXGZyYWN7dF97MC4wNSw4fX17XHNxcnR7OX19XGNkb3QgUyBcbGUgXG92ZXJsaW5le1l9IC0gXG11IFxsZSBcZnJhY3t0X3swLjA1LDh9fXtcc3FydHs5fX1cY2RvdCBTXHJpZ2h0KSA9IDAuOTAsClxdCnNvIHdlIG1heSB0YWtlClxiZWdpbnthbGlnbip9CmdfMSAmPSAtXGZyYWN7dF97MC4wNSw4fX17XHNxcnR7OX19XGNkb3QgUyBcZG90ZXEgLTAuNjIwXGNkb3QgUyBcXApnXzIgJj0gXGZyYWN7dF97MC4wNSw4fX17XHNxcnR7OX19XGNkb3QgUyBcZG90ZXEgMC42MjBcY2RvdCBTLgpcZW5ke2FsaWduKn0KCiMjUHJvYmxlbSA3LjE0ICg0IHBvaW50cykKPG9sIHR5cGU9ImEiPgo8bGk+XChFW1pdPTBcKSwgXChFW1peMl0gPSBWW1pdICsgRVtaXV4yID0gMSArIDBeMiA9IDFcKS4KPC9saT4KPGxpPgpcKFQgPSBcc3FydHtcbnV9XGNkb3QgWlxjZG90IFleey0xLzJ9XCkuIEJ5IHByb2JsZW0gNC45MCwgaWYgXChcbnU+MVwpIHRoZW4gXChFW1leey0xLzJ9XVwpIGV4aXN0cy4gU2luY2UgXChaXCkgYW5kIFwoWVwpIGFyZSBpbmRlcGVuZGVudCwgaWYgXChcbnU+MVwpIHRoZW4gClxbCkVbVF0gPSBcc3FydHtcbnV9XGNkb3QgRVtaXVxjZG90IEVbWV57LTEvMn1dID0gXHNxcnR7XG51fVxjZG90IDBcY2RvdCBFW1leey0xLzJ9XSA9IDAuClxdCkJ5IHByb2JsZW0gNC45MCwgaWYgXChcbnUgPiAyXCkgdGhlbiBcKEVbWV57LTF9XSA9IDEvKFxudSAtIDIpXCkuIFRodXMsIGZvciBcKFxudSA+IDJcKQpcYmVnaW57YWxpZ24qfQogIFZbVF0gJj0gRVtUXjJdIC0gRVtUXV4yID0gRVtUXjJdIC0gMF4yID0gRVtUXjJdIFxcCiAgICAmPSBFW1xudVxjZG90IFpeMlxjZG90IFleey0xfV0gXFwKICAgICY9IFxudVxjZG90IEVbWl4yXVxjZG90IEVbWV57LTF9XSBccXF1YWRcdGV4dHsoc2luY2UgXChaXCkgYW5kIFwoWVwpIGFyZSBpbmRlcGVuZGVudCl9IFxcCiAgICAmPSBcbnVcY2RvdCAxIFxjZG90IFxmcmFjezF9e1xudS0yfSBcXAogICAgJj0gXGZyYWN7XG51fXtcbnUgLTJ9LgpcZW5ke2FsaWduKn0KVGhlcmVmb3JlLCBpZiBcKFxudT4yXCkgdGhlbiBhIFwodFwpLWRpc3RyaWJ1dGVkIHJhbmRvbSB2YXJpYWJsZSB3aXRoIFwoXG51XCkgZGVncmVlcyBvZiBmcmVlZG9tIGhhcyBtZWFuIDAgYW5kIHZhcmlhbmNlIFwoXG51LyhcbnUtMilcKS4KPC9saT4KPC9vbD4KCiMjUHJvYmxlbSA3LjE2ICg0IHBvaW50cykKTGV0IFwoV18xXCkgYW5kIFwoV18yXCkgYmUgaW5kZXBlbmRlbnQgXChcY2hpXjJcKSBkaXN0cmlidXRlZCByYW5kb20gdmFyaWFibGVzIHdpdGggXChcbnVfMVwpIGFuZCBcKFxudV8yXCkgZGVncmVlcyBvZiBmcmVlZG9tLCByZXNwZWN0aXZlbHkuIExldApcWwpGID0gXGZyYWN7V18xL1xudV8xfXtXXzIvXG51XzJ9ID0gXG51XzJcY2RvdCBcbnVfMV57LTF9XGNkb3QgV18xXGNkb3QgV18yXnstMX0uClxdCjxvbCB0eXBlPSJhIj4KPGxpPgpCeSBwcm9ibGVtIDQuOTAsIGlmIFwoXG51XzIgPiAyXCkgdGhlbiBcKEVbV18yXnstMX1dID0gMS8oXG51XzIgLSAyKVwpLiBTaW5jZSBleHBlY3RlZCB2YWx1ZSBpcyBsaW5lYXIgYW5kIHNpbmNlIFwoV18xXCkgYW5kIFwoV18yXCkgYXJlIGluZGVwZW5kZW50IHJhbmRvbSB2YXJpYWJsZXMsClxiZWdpbnthbGlnbip9CiAgRVtGXSAmPSBFW1xudV8yXGNkb3QgXG51XzFeey0xfVxjZG90IFdfMVxjZG90IFdfMl57LTF9XSBcXAogICAgJj0gXG51XzJcY2RvdCBcbnVfMV57LTF9XGNkb3QgRVtXXzFdXGNkb3QgRVtXXzJeey0xfV0gXFwKICAgICY9IFxudV8yXGNkb3QgXG51XzFeey0xfVxjZG90IFxudV8xXGNkb3QgXGZyYWN7MX17XG51XzIgLSAyfSBcXAogICAgJj0gXGZyYWN7XG51XzJ9e1xudV8yIC0yfS4KXGVuZHthbGlnbip9CjwvbGk+CjxsaT4KQnkgcHJvYmxlbSA0LjkwLCBcKEVbV18xXjJdPVxudV8xXGNkb3QoXG51XzErMilcKSwgYW5kIGlmIFwoXG51XzIgPiA0XCkgdGhlbiBcKEVbV18yXnstMn1dID0gMS9bKFxudV8yIC0gMikoXG51XzItNCldXCkuIFNpbmNlIGV4cGVjdGVkIHZhbHVlIGlzIGxpbmVhciBhbmQgc2luY2UgXChXXzFcKSBhbmQgXChXXzJcKSBhcmUgaW5kZXBlbmRlbnQgcmFuZG9tIHZhcmlhYmxlcywKXGJlZ2lue2FsaWduKn0KICBFW0ZeMl0gJj0gRVtcbnVfMl4yXGNkb3QgXG51XzFeey0yfVxjZG90IFdfMV4yXGNkb3QgV18yXnstMn1dIFxcCiAgICAmPSBcbnVfMl4yXGNkb3QgXG51XzFeey0yfVxjZG90IEVbV18xXjJdXGNkb3QgRVtXXzJeey0yfV0gXFwKICAgICY9IFxudV8yXjJcY2RvdCBcbnVfMV57LTJ9XGNkb3QgXG51XzFcY2RvdChcbnVfMSsyKVxjZG90IFxmcmFjezF9eyhcbnVfMiAtIDIpXGNkb3QoXG51XzIgLSA0KX0gXFwKICAgICY9IFxmcmFje1xudV8yXjJcY2RvdChcbnVfMSArIDIpfXtcbnVfMVxjZG90KFxudV8yIC0yKVxjZG90KFxudV8yIC0gNCl9LgpcZW5ke2FsaWduKn0KRmluYWxseSwgdGhlIHZhcmlhbmNlIG9mIFwoRlwpIGlzIFwoVltGXSA9IEVbRl4yXSAtIEVbRl1eMlwpIHdoaWNoIGlzLCBhZnRlciBzaW1wbGlmaWNhdGlvbiwKXFsKVltGXSA9IFxmcmFjezJcY2RvdFxudV8yXjJcY2RvdChcbnVfMSArIFxudV8yIC0yKX17XG51XzFcY2RvdCAoXG51XzIgLSAyKV4yXGNkb3QoXG51XzIgLSA0KX0uClxdCjwvbGk+Cjwvb2w+CgojI1Byb2JsZW0gNy4yNCAoMiBwb2ludHMpCldlIGFyZSBnaXZlbiB0aGF0IHRoZSBwb3B1bGF0aW9uIHN0YW5kYXJkIGRldmlhdGlvbiBpcyBcKFxzaWdtYSA9IDIuNVwpIGluY2hlcy4gV2UgYXJlIHRyeWluZyB0byBmaW5kIGEgc2FtcGxlIHNpemUgXChuXCkgc28gdGhhdCBcKFAoIHxcb3ZlcmxpbmV7WX0gLSBcbXUgfCBcbGUgMC40KSBcZ2UgMC45NVwpLiBUaGlzIGlzIGVxdWl2YWxlbnQgdG8gdGhlIGNvbmRpdGlvbgpcWwpQXGxlZnQoLVxmcmFjezAuNFxjZG90IFxzcXJ0e259fXsyLjV9ClxsZSBcc3FydHtufVxjZG90XGZyYWN7XG92ZXJsaW5le1l9IC0gXG11fXtcc2lnbWF9IApcbGUgXGZyYWN7MC40XGNkb3QgXHNxcnR7bn19ezIuNX1ccmlnaHQpIFxnZSAwLjk1LgpcXQpGb3IgYSBsYXJnZSBlbm91Z2ggc2FtcGxlIHNpemUsIFwoXHNxcnR7bn1cY2RvdCAoXG92ZXJsaW5le1l9LVxtdSkvXHNpZ21hXCkgaXMgd2VsbCBhcHByb3hpbWF0ZWQgYnkgdGhlIHN0YW5kYXJkIG5vcm1hbCByYW5kb20gdmFyaWFibGUgXChaXCkuIFJlY2FsbCB0aGF0IFwoel97XGFscGhhfVwpIGlzIHRoZSBudW1iZXIgZGVmaW5lZCBieSB0aGUgcHJvcGVydHkgXChQKFogXGdlIHpfe1xhbHBoYX0pID0gXGFscGhhXCksIHdoZXJlIFwoMDxcYWxwaGE8MVwpLgpTaW5jZSBcKFAoLXpfezAuMDI1fSBcbGUgWiBcbGUgel97MC4wMjV9KSA9IDAuOTVcKSwgYW5kIHNpbmNlIFwoel97MC4wMjV9XGRvdGVxIDEuOTZcKSwgb3VyIGVzdGltYXRlZCBcKG5cKSBzaG91bGQgc2F0aXNmeSBcKDAuNFxjZG90XHNxcnR7bn0vMi41IFxnZSAxLjk2XCksIHNvIGl0IHN1ZmZpY2VzIHRvIHRha2UgClxbCm4gXGdlICgxLjk2XGNkb3QgMi41IC8gMC40KV4yIFxkb3RlcSAoMTIuMjUpXjIgXGRvdGVxIDE1MC4wNi4KXF0KV2Ugd2lsbCB0YWtlIFwobj0xNTFcKS4KCiMjUHJvYmxlbSA3LjI2ICgyIHBvaW50cykKV2UgYXJlIGdpdmVuIGEgc2FtcGxlIHNpemUgb2YgXChuPTQwXCkgYW5kIHdlIGFyZSBnaXZlbiB0aGF0IHRoZSByYW5nZSBmb3IgcEggaXMgXCg4LTU9M1wpLCB0aGVyZWZvcmUgd2UgY2FuIGVzdGltYXRlIHRoZSBzdGFuZGFyZCBkZXZpYXRpb24gYnkgXChcc2lnbWEgXGRvdGVxIDMvNCA9IDAuNzVcKS4gVXNpbmcgdGhlIGVzdGltYXRlIHByb3ZpZGVkIGJ5IHRoZSBjZW50cmFsIGxpbWl0IHRoZW9yZW0sIHdlIGNhbGN1bGF0ZQpcYmVnaW57YWxpZ24qfQogIFAofCBcb3ZlcmxpbmV7WX0gLSBcbXUgfCBcbGUgMC4yKSAmPQogIFBcbGVmdCggLVxmcmFjezAuMlxjZG90IFxzcXJ0ezQwfX17XHNpZ21hfSBcbGUKICBcc3FydHs0MH1cY2RvdCBcZnJhY3tcb3ZlcmxpbmV7WX0gLSBcbXV9e1xzaWdtYX0KICBcbGUgXGZyYWN7MC4yXGNkb3QgXHNxcnR7NDB9fXtcc2lnbWF9IFxyaWdodCkgXFwKICAmXGRvdGVxIDEgLSAyXGNkb3QgUCggWiBcZ2UgMC4yXGNkb3QgXHNxcnR7NDB9L1xzaWdtYSkgXFwKICAmXGRvdGVxIDEgLSAyXGNkb3QgUCggWiBcZ2UgMC4yXGNkb3QgXHNxcnR7NDB9LzAuNzUpIFxcCiAgJlxkb3RlcSAxIC0gMlxjZG90IFAoIFogXGdlIDEuNjkgKSBcXAogICZcZG90ZXEgMSAtIDJcY2RvdCAwLjA0NTUgXFwKICAmXGRvdGVxIDAuOTA5LgpcZW5ke2FsaWduKn0KCiMjUHJvYmxlbSA3LjM2ICgyIHBvaW50cykKV2UgYXJlIGdpdmVuIGEgcmFuZG9tIHNhbXBsZSBcKFlfMSwgWV8yLCBcZG90c2MsIFlfezUwfVwpLCB3aGVyZSBcKEVbWV9pXT1cbXVcKSBhbmQgClwoVltZX2ldID0gXHNpZ21hXjIgXGRvdGVxIDRcKS4gV2Ugd2FudCB0byBmaW5kIFwoXG11XCkgc28gdGhhdApcKFAoXHN1bV97aT0xfV57NTB9IFlfaSA+IDIwMCkgXGRvdGVxIDAuOTVcKS4gVGhpcyBpcyBlcXVpdmFsZW50IHRvIHRoZSBjb25kaXRpb24KXChQKFxvdmVybGluZXtZfSA+IDQpIFxkb3RlcSAwLjk1XCkgc2luY2UgXChcc3VtX3tpPTF9Xns1MH0gWV9pID0gNTBcY2RvdCBcb3ZlcmxpbmV7WX1cKS4KSWYgd2Ugc3VwcG9zZSB0aGF0IFwoXG92ZXJsaW5le1l9XCkgaXMgYXBwcm94aW1hdGVseSBub3JtYWwsIHRoZW4gClwoXHNxcnR7NTB9XGNkb3QgKFxvdmVybGluZXtZfSAtIFxtdSkvMlwpIGlzIGFwcHJveGltYXRlZCBieSB0aGUgc3RhbmRhcmQgbm9ybWFsIHJhbmRvbSB2YXJpYWJsZSBcKFpcKS4gClRodXMsIFwoUChcb3ZlcmxpbmV7WX0gPiA0KVwpIGlzIGVzdGltYXRlZCBieSBcKFAoWiA+IFxzcXJ0ezUwfSBcY2RvdCAoNCAtIFxtdSkvMilcKS4gU2luY2UgClwoUChaID4gLTEuNjQ1KSBcZG90ZXEgMC45NVwpLCB3ZSBzZWUgdGhhdCB0aGUgZGVzaXJlZCBlc3RpbWF0ZSBmb3IgXChcbXVcKSBpcyBvYnRhaW5lZCBieSBzb2x2aW5nIHRoZSBlcXVhdGlvbgpcKCg0IC0gXG11KS8yIFxkb3RlcSAtMS42NDVcKS4gVGhpcyB5aWVsZHMgXChcbXUgXGRvdGVxIDQgKyAyXGNkb3QgMS42NDUvXHNxcnR7NTB9IFxkb3RlcSA0LjQ2NVwpLgoKIyNQcm9ibGVtIDcuMzggKDIgcG9pbnRzKQpXZSBhcmUgZ2l2ZW4gaW5kZXBlbmRlbnQgcmFuZG9tIHNhbXBsZXMgXChYXzEsIFxkb3RzYywgWF9uXCkgYW5kIFwoWV8xLCBcZG90c2MsIFlfblwpIGZyb20gcG9wdWxhdGlvbnMgd2l0aCBtZWFucyBcKFxtdV8xXCkgYW5kIFwoXG11XzJcKSwgYW5kIHZhcmlhbmNlcyBcKFxzaWdtYV8xXjJcKSBhbmQgXChcc2lnbWFfMl4yXCksIHJlc3BlY3RpdmVseS4gRGVmaW5lIHRoZSByYW5kb20gdmFyaWFibGVzIFwoV18xLCBcZG90c2MsIFdfblwpIGJ5IFwoV19pID0gWF9pIC0gWV9pXCksIFwoaT0xLCBcZG90c2MsIG5cKS4gVGhlIFwoV19pXCkgYXJlIGNsZWFybHkgaW5kZXBlbmRlbnQgYW5kIGlkZW50aWNhbGx5IGRpc3RyaWJ1dGVkLApcKEVbV19pXSA9IFxtdV8xIC0gXG11XzJcKSwgXChWW1dfaV0gPSBcc2lnbWFfMV4yICsgXHNpZ21hXzJeMlwpLCBcKGk9MSwgXGRvdHNjLCBuXCkuIFRoZSBoeXBvdGhlc2VzIG9mIFRoZW9yZW0gNy40IGFyZSBzYXRpc2ZpZWQsIHNvIHRoZSBkaXN0cmlidXRpb24gZnVuY3Rpb24gZm9yClxbClVfbiA9IFxmcmFje1xvdmVybGluZXtXfSAtIChcbXVfMSAtIFxtdV8yKX17XHNxcnR7KFxzaWdtYV8xXjIgKyBcc2lnbWFfMl4yKS9ufX0KICA9IFxmcmFjeyhcb3ZlcmxpbmV7WH0gLSBcb3ZlcmxpbmV7WX0pIC0gKFxtdV8xIC0gXG11XzIpfXtcc3FydHsoXHNpZ21hXzFeMiArIFxzaWdtYV8yXjIpL259fQpcXQpjb252ZXJnZXMsIGFzIFwoblxyaWdodGFycm93XGluZnR5XCksIHRvIHRoZSBkaXN0cmlidXRpb24gZnVuY3Rpb24gZm9yIHRoZSBzdGFuZGFyZCBub3JtYWwgcmFuZG9tIHZhcmlhYmxlLgoKIyNQcm9ibGVtIDcuNDAgKDIgcG9pbnRzKQpcYmVnaW57YWxpZ24qfQogIFAoIHwoXG92ZXJsaW5le1h9IC0gXG92ZXJsaW5le1l9KSAtIChcbXVfMSAtIFxtdV8yKXwgXGxlIDAuMDUgKQogICY9IFBcbGVmdChcbGVmdHxcZnJhY3soXG92ZXJsaW5le1h9IC0gXG92ZXJsaW5le1l9KSAtIChcbXVfMSAtIFxtdV8yKX17XHNxcnR7KFxzaWdtYV8xXjIvbl8xKSArIChcc2lnbWFfMl4yL25fMil9fVxyaWdodHwKICBcbGUgXGZyYWN7MC4wNX17XHNxcnR7KDAuMDEvNTApICsgKDAuMDIvMTAwKX19XHJpZ2h0KSBcXAogICZcZG90ZXEgUCggfFp8IFxsZSAyLjUwICkgPSAxIC0gMlxjZG90IFAoWiBcZ2UgMi41MCkgXFwKICAmXGRvdGVxIDEgLSAyXGNkb3QgMC4wMDYyIFxcCiAgJlxkb3RlcSAwLjk4NzYuClxlbmR7YWxpZ24qfQoKIyNQcm9ibGVtIDcuNDIgKDIgcG9pbnRzKQpXZSBhcmUgZ2l2ZW4gYSBwb3B1bGF0aW9uIG1lYW4gXChcbXU9Mi41XCkgbWludXRlcyBhbmQgc3RhbmRhcmQgZGV2aWF0aW9uIFwoXHNpZ21hID0gMlwpIG1pbnV0ZXMuIEluIGEgcmFuZG9tIHNhbXBsZSBvZiBzaXplIFwobj0xMDBcKSwgd2Ugd2FudCB0byBlc3RpbWF0ZQpcYmVnaW57YWxpZ24qfQpQXGxlZnQoXHN1bV97aT0xfV57MTAwfSBZX2kgPiAyNDBccmlnaHQpIAogICY9IFBcbGVmdChcb3ZlcmxpbmV7WX0gPiAyLjRccmlnaHQpIFxcCiAgJj0gUFxsZWZ0KFxzcXJ0e259XGNkb3QgXGZyYWN7XG92ZXJsaW5le1l9IC0gXG11fXtcc2lnbWF9ID4gXHNxcnR7MTAwfVxjZG90XGZyYWN7Mi40IC0gMi41fXsyfSBccmlnaHQpIFxcCiAgJlxkb3RlcSBQKFogPiAtMC41KSA9IDEgLSBQKFogPiAwLjUpIFxcCiAgJlxkb3RlcSAxIC0gMC4zMDg1ID0gMC42OTE1LgpcZW5ke2FsaWduKn0KCgoKCgoKCgoKCg==