INSTRUCTIONS: Write legibly. Indicate your answer clearly. Show all work; explain your answers. Answers with work not shown might be worth zero points. No calculators, cell phones, or cheating.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Worth</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>105</td>
<td></td>
</tr>
</tbody>
</table>

(15) 1. A slender rod of constant density δ lies along the line segment C in the yz–plane, parametrized by $r(t) = (0, t, 2t - 2t^2)$, $0 \leq t \leq 1$. Find I_x, the moment of inertia about the x–axis.

Compare with Problem 28 from Section 15.1. Note that the velocity is $|r'(t)| = |(0, 1, -2)| = \sqrt{5}$. The moment of inertia is:

$$I_x = \delta \int_C (y^2 + z^2) \, ds$$

$$= \delta \int_0^1 (t^2 + (2 - 2t)^2) \sqrt{5} \, dt$$

$$= \delta \sqrt{5} \int_0^1 (5t^2 - 8t + 4) \, dt$$

$$= \frac{5\sqrt{5}}{3} \delta$$

(15) 2. Find the work W done by the vector field $F(x, y, z) = (2y, 3x, x + y)$ over the curve C parametrized by $r(t) = (\cos t, \sin t, t/6)$, for $0 \leq t \leq 2\pi$, in the direction of increasing t.

Compare with Problems 14 from Section 15.2. We calculate

$$W = \int_0^{2\pi} F \cdot \frac{dr}{dt} \, dt$$

$$= \int_0^{2\pi} (2\sin t, 3\cos t, \cos t + \sin t) \cdot (-\sin t, \cos t, 1/6) \, dt$$

$$= \int_0^{2\pi} -2\sin^2 t + 3\cos^2 t + \frac{\cos t + \sin t}{6} \, dt$$

$$= \frac{\pi}{3}$$

(15) 3. Find the flux of $F(x, y) = (x + y, x^2 + y^2)$ outward across the triangle with vertices $(1, 0)$, $(0, 1)$, and $(-1, 0)$.

Compare with Problems 30 from Section 15.2. The perimeter of the triangle decomposed into three smooth pieces, C_R at the right, C_L at the left, and C_B at the bottom. We calculate the flux F_r, F_L and F_B across each one of them.

Let us use first principles only. We parametrize C_R by $r(t) = (1 - t, t)$ with $0 \leq t \leq 1$, going counter
clockwise around the triangle. The unit outward normal vector is \(n = \frac{1}{\sqrt{2}}(1, 1) \), \(ds = |r'(t)|dt \), and

\[
F_R = \int_0^1 F \cdot n \, ds = \int_0^1 (1, (1 - t)^2 + t^2) \cdot \frac{1}{\sqrt{2}}(1, 1) \sqrt{2} dt = \int_0^1 (1 + (1 - t)^2 + t^2) dt = 2 \int_0^1 1 - t + t^2 dt = \frac{5}{3}.
\]

For the remaining pieces of the curve, we use the formula on page 856 of the text book. We parametrize \(C_L \) by \(r(t) = (x(t), y(t)) = (-t, 1-t) \) with \(0 \leq t \leq 1 \). Set \(M = x + y \) and \(N = x^2 + y^2 \). Then

\[
F_L = \oint_{C_L} M \, dy - N \, dx = \int_0^1 (1 - 2t)(-1) - (t^2 + (1 - t)^2)(-1) dt = 2 \int_0^1 t^2 dt = \frac{2}{3}.
\]

To parametrize \(C_B \) we set \(r(t) = (-1 + 2t, 0) \) for \(0 \leq t \leq 1 \). Then \(dy = 0 \) and \(dx = 2dt \). We find

\[
F_B = \oint_{C_B} M \, dy - N \, dx = \int_0^1 (-1 + 2t)^2 \cdot 2 dt = 2 \int_0^1 -1 + 4t - 4t^2 dt = -\frac{2}{3}.
\]

The desired flux is the sum of \(F_R, F_L, \) and \(F_B, \) which means that it is \(5/3 \).

We could certainly apply Green’s Theorem, to find a different computation of the same flux. Let \(R \) be the triangle with the given vertices. Then the flux is given by

\[
\oint M \, dy - N \, dx = \int \int_R \text{div} \, F \, dA = \int_0^1 \int_{1-y}^{1+y} (1 + 2y) \, dx \, dy = \frac{5}{3}.
\]

(15) 4. Apply the component test to decide whether \(F(x, y, z) = e^{y+z^2}(1, x, 2x) \) is conservative, and if so, find the potential.

Compare with Problem 9 from Section 15.3. Set \(F = (M, N, P) \). Then

\[
M_y = e^{y+z^2} = N_x, \quad M_z = 2e^{y+z^2} = P_x, \quad N_z = 2xe^{y+z^2} = P_y.
\]
The component test tells us that \(F \) is conservative. By inspection, we see that
\[
 f(x, y, z) = xe^{y+2x} + c
\] is a potential for \(F \).

5. Compute the curve integral \(\int_C F \, dr \) where
\[
 F(x, y, z) = \frac{1}{x^2+y^2+z^2} (2x, 2y, 2z)
\] and the curve \(C \) is parametrized by
\[
 r(t) = (-1 + \cos t, 1 + \sin t, \sin t + \cos t) \quad \text{for} \quad 0 \leq t \leq \pi/2.
\] This problem borrows from Problem 22 in Section 15.3. Note that the vector field is conservative, in fact
\[
 f(x, y, z) = \ln(x^2 + y^2 + z^2)
\] is a potential. The curve goes from
\[
 r(0) = (0, 1, 1) \quad \text{to} \quad r(\pi/2) = (-1, 2, 1).
\] Then
\[
 \int_C F \, dr = f(r(\pi/2)) - f(r(0)) = \ln 6 - \ln 2 = \ln 3.
\]

6. Calculate \(\oint_C (6y + x) \, dx + (y + 2x) \, dy \) where \(C \) is the curve defined by
\[
 (x - 2)^2 + (y - 3)^2 = 4.
\] This is Problem 19 from Section 15.4. We apply Gauss' Theorem. Setting
\[
 M = 6y + x \quad \text{and} \quad N = y + 2x,
\] we find that \(N_x = 2 \) and \(M_y = 6 \). We denote the disk inclosed in the circle \(C \) by \(R \). The theorem tells us that
\[
 \oint_C M \, dx + N \, dy = \int \int_R (N_x - M_y) \, dx \, dy = \int \int_R -4 \, dx \, dy = -16\pi.
\]

7. Find the area of the part of the plane \(2x + 6y + 3z = 6 \) that is contained in the first octant, \(x, y, z \geq 0 \). Call this surface \(S \). To earn any points you **must** treat \(S \) as an implicitly defined surface and use the appropriate formula to compute its area.

Compare this with Problem 52 in Section 15.5. The implicit equation for the surface is
\[
 F(x, y, z) = 2x + 6y + 3z - 6 = 0,
\] and \(\nabla F = (2, 6, 3) \). Set \(p = (0, 0, 1) \), then \(\nabla F \cdot p = 3 \neq 0 \). The shaddow of \(S \) in the \(xy \)-plane is the triangle \(R \) with vertices \((0, 0), (3, 0), \) and \((0, 1)\), which is of area \(3/2 \), and \(p \) is perpendicular to the \(xy \)-plane. We find that
\[
 |\nabla F| = \sqrt{2^2 + 6^2 + 3^2} = 7 \quad \text{and} \quad |\nabla F \cdot k| = 3.
\] The surface area of \(S \) is
\[
 \int \int_R \frac{|\nabla F|}{|\nabla F \cdot p|} \, dA = \frac{7}{2}.
\]