Linear Algebra (Math 311) – Test 2

Problem 1. [20 Points] Consider the matrix

\[A = \begin{pmatrix} 1 & 2 & 5 \\ 2 & 1 & 3 \\ 0 & 3 & 7 \end{pmatrix}. \]

1. Find the nullspace of \(A \) and its dimension.

2. Find a basis of the row space of \(A \) and its dimension.

3. Find a basis of the column space of \(A \) and its dimension.

4. Find the orthogonal complement to the row space of \(A \) and its dimension.

Problem 2. [10 Points] Consider the basis \(\{1, 1 - t, 1 + t + t^2\} \) of the space \(P_2 \) of polynomials of degree at most two. Find the coordinate vector of \(t - t^2 \) with respect to \(S \).

Problem 3. [5 Points] State the Cauchy–Schwarz inequality.

Problem 4. [30 Points] Consider the subspace \(W \) of \(\mathbb{R}^4 \) spanned by the set \(S \) and a vector \(v \):

\[S = \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 3 \\ 1 \end{pmatrix} \right\} \quad \text{and} \quad v = \begin{pmatrix} 2 \\ 1 \\ -1 \\ 3 \end{pmatrix}. \]

1. Find the cosine of the angle between the first two vectors in \(S \).

2. Find the length of the third vector in \(S \).

3. Find the matrix of the standard inner product on \(W \) (obtained by restriction of the dot product on \(\mathbb{R}^4 \)) with respect to the basis \(S \).

4. Orthonormalize \(S \) (Gram–Schmidt).

5. Find the projection of \(v \) onto \(W \).
Problem 5. [15 Points] If V is a finite dimensional vector space and W is a subspace, the W is finite dimensional. Prove it.

Problem 6. [20 Points] Let V be an inner product space and W a subspace.

1. Show, for every $v \in V$, $||\text{proj}_W v|| \leq ||v||$.

2. Define W^\perp and show that $W \cap W^\perp = \{0\}$.