1. (20) Provide short answers:

 (a) Let G be a group. What does it mean that H is a subgroup of G?
 A nonempty subset H of a group G is said to be a subgroup of G if, under the product of G, H itself forms a group.

 (b) What does it mean that a subgroup H of G is normal?
 A subgroup N of G is said to be a normal subgroup of G if for every $g \in G$ and $n \in N$, $gng^{-1} \in H$.
 Equivalently, N is a normal subgroup of G if and only if $gNg^{-1} = N$ for all $g \in G$.

 (c) What is the centralizer C of a subgroup H of G?
 If H is a subgroup of G, then the centralizer $C(H)$ of H is the set $\{x \in G \mid xh = hx \text{ for all } x \in H\}$

 (d) What is the commutator subgroup B of a group G.
 The commutator subgroup of G is the subgroup generated by the elements of the form $ghg^{-1}h^{-1}$.

 (e) If $\phi : G \to G'$, what does it mean that ϕ is a group homomorphism?
 A mapping $\phi : G \to G'$ is said to be a homomorphism if $\phi(gh) = \phi(g)\phi(h)$ for all g and $h \in G$.

2. (10) Find the center of the dihedral group D_{10}.
 The center of a group consists of those elements that commute with every group element.

3. (10) Let M and N be normal subgroups of G. Show that MN is a normal subgroup of G.

4. (10) Let G be a group and $g \in G$. Set $\phi(x) = g^{-1}xg$. Show that ϕ is a homomorphism.

5. (10) Let G be a group in which $(ab)^3 = a^3b^3$ for all a and b in G. Show that $H = \{x^3 \mid x \in G\}$ is a normal subgroup of G.

6. (10) Suppose that H is a subgroup of G such that whenever $Ha \neq Hb$, then $aH \neq bH$. Prove that $gHg^{-1} \subseteq H$ for all $g \in G$.

7. (20) If G is an abelian group of order $o(G)$, and if p is a prime number, such at $p^n \mid o(G)$, $p^{n+1} \not\mid o(G)$, then G has a subgroup of order p^n. Prove it.