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Part I: General Considerations

1. Pioneers and Voyagers

Attempts to communicate with the inhabitants of other solar systems have been
made since 1959. These initially involved sending and listening for radio transmis-
sions. In the 1970’s, messages to aliens were included on the Pioneer 10 and 11,
and Voyager 1 and 2 spacecraft. There is an account of these efforts in the book
[19]; see especially the chapter by F. D. Drake. The Voyager messages include some
mathematics, e.g., a translation table between binary and decimal representation
systems. (Recent updates on the search for extra-terrestial intelligence may be found
at www.seti-inst.edu and www.setileague.org.)

At a NATO Workshop at the University of Hawaii in October 2002, Jack Cohen
raised the question: What makes you think that the aliens will recognize your mathe-
matics? Might they not have an entirely different mode of thought? At the time, the
feeling of the mathematicians present was that the fundamentals of discrete math,
and in particular the integers, would be the same in any mathematical system. While
aliens might have a different perception that changes the more complex structures
that they would use to describe the universe, their natural numbers would be the
same as ours. Furthermore, if they are very intelligent, then they should be able to
add and multiply integers, so for example aliens would recognize a sequence of prime
numbers.

Now in fact, such questions about the fundamentals of mathematics have a long
history, without the alien factor. My own interest was spurred years ago by a rather
long but otherwise forgettable lecture on “The nature of duality” by a visitor to the
Philosophy Department. But Jack’s question has encouraged me to put down some
of the thoughts that have been fomenting beneath the surface, in need for further
development. Besides raising a number of topics for discussion, we will propose some
problems that might be appropriate for student projects.
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Let us begin with an obvious question. In dealing with aliens who don’t understand
our mathematics, there seem to be at least three possibilities.

(1) Maybe they aren’t very smart, like worms or horses.
(2) Maybe they are intelligent, but don’t have a culture of mathematics, like

people a few thousand years ago.
(3) Maybe they are intelligent, but have a totally different mode of perception,

which does not necessarily include discreteness.

How can we distinguish between these possibilities?

2. Kronecker

Recall Kronecker’s famous remark that “God created the natural numbers; all the
rest is the work of man.” There is a lot to be said for this position. A fundamental
question is: Are the natural numbers more basic than set theory? In terms of in-
terpretability, of course, set theory is more general (see, e.g., Roitman [17], Chapter
4). But historically, set theory makes a rather late appearance on the scene, and its
abstract formalization is still not well-understood by most professional mathemati-
cians.

For the purposes of discussion, it is useful to delineate some different parts of
mathematics:

(1) counting,
(2) logic,
(3) set theory,
(4) discrete structures (algebra),
(5) continuous structures (geometry, analysis, topology).

The problem is to understand to what extent each of these parts has a Platonic
reality, and to what extent they depend upon our perception and mental construc-
tion/interpretation of our surroundings?

Here we will primarily deal with the ontology of discrete (even finite) systems. The
second major issue, for another time, is the nature of the continuum. References there
include the work of Dedekind, Cantor, C. S. Peirce, Weyl, Brouwer, Heyting, Bishop,
A. Robinson and J. L. Bell. It seems clear that our modeling of the continuum is
more arbitrary than the system of natural numbers.

It is reasonable to ask to what extent an alien’s logic would resemble ours. In Part
II, we will explore some alternative forms of logic.

3. Dinosaurs and Plato

Imagine two dinosaurs walking through the forest. What does that mean? With no
men there to count them, in what sense are there really two dinosaurs? Are numbers
a product of our minds, or do they have some sort of Platonic independent existence?
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We can ask similar questions about the real numbers or the Continuum Hypothesis,
but this is more basic. Kronecker’s distinction may indeed have some validity. Surely
we would want to allow those two dinosaurs to be there, whether or not they leave
two fossil skeletons for us to count later.

A related question is: What are we to make of the role of number-theoretic proper-
ties in nature? For example, why are there 13- and 17-year periodic cicadas? Where
else do prime numbers occur in nature? What is the significance of Fibonacci num-
bers in nature? It would seem at the very least that the answers to these questions
do not depend on our perception of the phenomena.

Now imagine a rainbow over the two dinosaurs walking through the forest. What
does that mean? In a sense, no two people ever see the same rainbow. Nor do we
have any way of knowing how colors actually appear to other people. Our analysis
of color should be quite different from that of number, the former being much more
dependent on our perception than the latter.

4. Cardinality

More generally, what is cardinality? We know that the predicate that two sets
have the same cardinality depends heavily on our choice of set theory, with the
obvious examples being countable models of set theory and the independence of the
Continuum Hypothesis. Moreover, even though equivalence relations on classes are
logically permissible, they are troubling as a basic idea, even for finite cardinals.

How is 2 different from 1075? from ℵ0? from an inaccessible cardinal? from a
Dedekind-finite infinite cardinal?

It seems a good guess that primitive life forms, say worms, cannot count. They
would have no clear concept of two. On the other hand, more advanced species such as
dogs or cats may well recognize a form of duality. Animals such as crows, dolphins or
chimpanzees perhaps can count higher. What numbers does a human baby recognize?
These matters are discussed at length in Dehaene [4], and summarized in Devlin [6].

In most (but not all) numeral systems, the numerals for one to three consist of that
many dots or lines, perhaps in a cursive or stylized form. This is often true of four,
but for five onwards the symbols become more abstract. See Cajori [3] and Ifrah [10].

Well into the twentieth century, there were societies in Africa, Oceania and America
where people counted one, two, three, four, many. Here, it is clearly not a matter
of intelligence, but of culture. Indeed, one imagines that all of mankind must have
been like that in the recent past. For larger counts, such devices as notched sticks
or knotted ropes are used, so there is a concept of cardinality beyond the naming of
numbers. See the first chapter of Ifrah [10].
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5. Theories with No Discrete Model

It is easy to construct theories with no discrete models, e.g., the theory of dense
chains.

(1) ∀x x ≤ x
(2) ∀x∀y x ≤ y & y ≤ x =⇒ x = y
(3) ∀x∀y∀z x ≤ y & y ≤ z =⇒ x ≤ z
(4) ∀x∀y x ≤ y OR y ≤ x
(5) ∀x∀y x ≤ y & x 6= y =⇒ ∃z x ≤ z & z ≤ y & x 6= z & z 6= y

And we can imagine creatures for whom dense chains are as fundamental to their
way of thought as discrete sets are to us. But we also know that ordered sets can
be represented by set inclusion, that is, can be embedded in a direct power of 2 (the
two-element ordered set). So, at least in a sense, if these creatures recognize dense
chains but not 2, then it represents ignorance on their part.

This leads us to an important observation made by George Wilkens:

Wilkens’ Thesis: If an intelligent being can understand order, then
it can comprehend the discrete set 2.

The idea is that if a partially ordered system is included in its mode of thought, then
a mathematically inclined alien should also be able to take reducts to have just an
ordered set, and then take ideals (or Dedekind cuts for a total order). It suffices to
take principal ideals, which requires only a minimal version of set theory. Thus the
mathematics of an intelligent creature, but one that does not comprehend discrete
systems, should be based on unordered structures, or else on cyclic structures, such
as the circle group (complex numbers with |z| = 1 under multiplication), or better
yet the unit circle with the operation u ∗ v = uv−1.

6. Set Theory with No Discrete Model

Our alien friends should have some means for dealing with collections of objects.
We should not expect that it would be formalized exactly by the axioms of ZFC, but
we can ask whether in its naive form it would not resemble our naive set theory. One
approach to this question is to consider modifications to standard set theory.

(1) Can we have a set theory that has models not containing a 2-element set?
(2) Can we have a set theory that has no model containing a 2-element set?
(3) Can we have a set theory that contains a 2-element set but not an n-element

set for every n? (For comparison, it is easy to have an n-element set for every
integer n ≥ 0, but no infinite set.)

(4) Does it make sense to have the logic contain 2 but not the set theory?

In this context, it is not even clear what we mean by standard set theory. There are
variations of the axioms for ZFC, and they need not be equivalent once you start
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dropping or weakening their parts. Two standard choices for amateurs are Devlin [5]
and Roitman [17].

It is possible to weaken set theory until there are models in which no nonempty
set is finite, and then add an axiom that every nonempty set must be infinite. In
particular, let us pose the problem of developing a version of set theory that would
satisfy the following axiom:

∀x x 6= ∅ =⇒ ∃b b ∈ x & x− {b} 6= ∅ .

Of course, some of the original axioms will have to be modified significantly. The
question is whether this can be done in such a way that anything recognizable is left
on the skeleton.

Dale Myers points out that in Boolean-valued set theory, or fuzzy set theory, every
nonempty set has a nonempty proper subset. However, in these cases the meaning
of membership is changed: the truth value of the relation ∈ (b, x) is taken to be an
element in an atomless Boolean algebra, or the real interval [0, 1], respectively.

Of course, it is easy to remove the Axiom of Infinity and have a set theory which
has a model with only finite sets.

7. Addition and Multiplication

Let us consider the arithmetic of the natural numbers. Suppose we encounter an
alien whose mode of thought gives him access to an unlimited collection of discrete,
finite sets.

First of all, can he abstract the notion of cardinality, that is, does he think of
numbers per se? Can he fill in the gaps in the sizes of the collections he has, and
extend beyond them? In other words: Can he count? We don’t necessarily require
him to think of the infinite collection N, though it is convenient for us to speak that
way.

Next, we would expect that an intelligent being who could count, could also put
the natural order on the natural numbers.

The addition operation can be viewed in several ways: using the successor function,
disjoint union, combinations of lengths (archaic but legitimate), and perhaps others.
Our creature’s logic would presumably support this operation, or some variant. One
viable alternative would be a creature that does only modular arithmetic.

Multiplication is harder. It could be thought of as successive addition, direct
products, areas, or other ways. Again, we would expect the logic to support some
version of this operation. It is worthwhile to appreciate the great step taken by
Descartes in La Géométrie, wherein he views a product as a number (scalar), rather
than an area.

Beyond this are all sorts of complications: zero, subtraction, negative numbers,
rational numbers, real numbers, imaginary and complex numbers. We should consider
the historical difficulties which mankind has had with each of these concepts, and
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also the notational difficulties and how this influences thought. Multiplying Roman
numerals is difficult: what is XLII × MCXXIV? It would be mere coincidence if our
aliens used a decimal system - if, indeed, they use a place system at all. What are
the alternatives for numerals?

What if our alien knew how to do finite fields - and only those?

8. Conclusions

Here are some fundamental questions.

(1) Is set theory a preferable place to lay the foundations of mathematics, as
opposed to the natural numbers (or some third alternative)? Since N can be
interpreted in set theory, then the latter is more general. On the other hand,
numbers definitely precede sets historically, and are more intuitive. Also, set
theory contains an inescapable indefiniteness, especially with regard to the
Power Set Axiom. (The richness of functions available in a model of set theory
depends upon the richness of subsets.) Thus there are different models of set
theory, but only one (up to isomorphism) for the natural numbers. Kronecker
would definitely vote in favor of N as a basis for mathematics. Constructivists
would go further, and suggest that we need to start with a different logic.

(2) How do our perception, and the workings of our brain, figure into the picture?
This question has been considered from Kant onwards, with more modern ref-
erences including Devlin [6] and Lakoff and Núñez [18]. For a simple example:
How do blind mathematicians perceive continuity? (See Jackson [11].) Does
sight influence our concept of discreteness? There are at least three possi-
bilities to consider. (i) What if our senses of sight, hearing, and touch were
absent or undeveloped, as our senses of taste and smell are relatively unde-
veloped? (ii) What if the world we inhabited actually contained no distinct
objects, that is, if reality were blurry on the scale of our perception? Consider
the worm. (iii) Or what if we had additional senses, hard for us to conceive
now?

(3) Can we imagine a “world form” with no analogue of the discrete natural
numbers? For example, the interstellar messages sent from earth presuppose
that the aliens will understand the binary system.

(4) Can we expect our putative intelligent aliens to have formalized their math-
ematics? Apparently, for most of their history, humans did not have much
mathematics beyond rudimentary counting. Nonetheless, axiomatization ap-
pears at a relatively early date with the ancient Greeks. Compare different
approaches to abstraction culturally.

(5) If we have the natural numbers N and the aliens don’t, then isn’t that a reflec-
tion of their ignorance? Can we say the same thing about set theory? What
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features should a system of thought have have in order to be considered math-
ematics? Certainly we should expect our aliens to have a consistent system,
but not all consistent systems are equally powerful (or even comparable).

(6) Perhaps they have something that we don’t. Could aliens have something
inexplicable in our system of math and logic? There is a principle of relativity
here: the question is not How do aliens do math? but rather How does one
mathematical system interpret into another? It goes both ways.

(7) The analogy with language is perhaps apropos. Language influences thought.
Humans communicate in many different languages, all reasonably powerful,
and it possible to translate from one language to another. However, there is
generally some meaning lost in translation, because the language itself builds
in nuances of interpretation. This expressive power of language affects the
direction of thought, and the same must be true of the language of mathe-
matics.

Part II: More Technical Considerations

In this section we will describe some types of generalized logic, which have the same
general form as our various logics, but perhaps different structures and interpreta-
tions. Our guiding theme will be to treat logic as algebra, following a well-established
(and profitable) tradition; [1], [9] and [12] are good introductions. We will phrase the
discussion in the language of universal algebra, to make it broad enough to include
not only traditional logics, but also fuzzy logic and the logic of quantum comput-
ing; see [15], [16], [20], [8], [13] and [14] for introductions to these. For the sake of
simplicity we avoid many extra features that could legitimately be considered, such
as partial algebras, multi-algebras, non-finitary types, relations of non-specified arity
(rank), and time dependence.

We should observe a distinction, that we are describing formalizations of mathe-
matics, not mathematical thought as it actually occurs in the brain. The two are
conceivably quite different.

A logical system has the following elements.

0. A prelogic consisting of those mathematical terms that we use to describe a
system from the outside.

(i) There should be enough (naive) set theory to describe a set of variables,
functions and relations.

(ii) There should be some (primitive) notion of equality.
(iii) We require the notion of an algebra or relational structure.
(iv) Some specific algebras or relational structures are assumed to be known for

any particular mode of thought.
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(v) We require enough recursion to define term algebras and homomorphisms
therefrom.

These prelogical needs should be more strictly surveyed at some point.
As an example, standard propositional logic presupposes notions equivalent to a

2-element Boolean algebra, and the ability to describe Boolean terms and evaluate
Boolean expressions. However, it does not initially require the concept of an arbitrary
Boolean algebra.

1. An alphabet containing

• X a set of variable symbols,
• C constant symbols,
• F function symbols,
• R relation symbols.

The alphabet also contains the symbols (,) for parentheses and commas, and = for
equality.

The language which we employ consists of the alphabet for symbols, the type to
establish syntax, and the notion of interpretation to determine semantics. The latter
two will be described below.

(Since constants may be regarded as nullary functions, it is not necessary to list
them separately from the proper function symbols. However, we follow the archaic
practice of doing so for the sake of clarity.

For practical purposes, we want to assume that X and R are nonempty, i.e., that
there are some variables and some relation symbols. Otherwise, some of what follows
is vacuous. There are situations where one wants to treat all the elements of a
structure as constants, and consider sentences involving those constants only, with
no variables and no quantifiers. These cases allow some simplification.)

2. A type τ = 〈Cτ , Fτ , Rτ , ατ ,Aτ〉 where

(i) Cτ ⊆ C,
(ii) Fτ ⊆ F ,
(iii) Rτ ⊆ R,
(iv) ατ : Fτ ∪ Rτ → N+,
(v) Aτ is a known structure (see below).

The interpretation is that Cτ is the set of names for constants in τ -structures, Fτ

is the set of proper (non-nullary) function symbols, and Rτ is the set of relational
symbols. The mapping ατ into the positive integers gives the arities (ranks) of the
functions and relations of τ . The relations on τ -structures take their values in Aτ ,
which has a different type λ. This process of types referring to types must end in
finitely many steps at a type with no relational symbols. We adopt the convention
that, for a type µ, Aµ = ∅ if and only if Rµ = ∅. (The scheme under construction, in
its most general version, is illustrated in Figure 1 with τ = τ0 and λ = τ1. Normally
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the syntax structure would have only 2 or 3 levels (n = 1 or 2), but one can make
interesting examples with more.)

Here τ represents the type of the structures that we are describing, whereas λ is
the type of the logic. Since we want to form predicates in τ -structures, we assume
that Rτ is nonempty. If we want to talk about equality in τ -structures, then there
should be a relational symbol for that in Rτ .

F0 = Wτ0(X)

R0 = {r(u) : r ∈ Rτ0 , u ∈ Fm
0 }⋂

F1 = Wτ1(R0)⋂
E1 = Wτ1∪Q1(R0)

R1 = {r(u) : r ∈ Rτ1 , u ∈ Fm
1 }⋂

F2 = Wτ2(R1)⋂
E2 = Wτ2∪Q2(R1)

Rn−1 = {r(u) : r ∈ Rτn−1 , u ∈ Fm
n−1}⋂

Fn = Wτn(Rn−1)⋂
En = Wτn∪Qn(Rn−1)

S

RS
τ0

Aτ0

R
Aτ0
τ1

Aτ1

Aτn−1

type τ = τ0

type λ = τ1

type τ2

type τn

σ

σ̂ = σ1

σ1 = σ2

σn−1

Figure 1

3. A structure of type τ is a system S = 〈S; CS
τ , F S

τ , RS
τ 〉 where

(i) S is the carrier set of S,
(ii) for each c ∈ Cτ , cS is a constant (nullary operation) of S,
(iii) for each f ∈ Fτ , fS : Sατ (f) → S,
(iv) for each r ∈ Rτ , rS : Sατ (r) → Aτ .

Thus cS, fS and rS denote the realization in the concrete structure S of the corre-
sponding symbols in Cτ , Fτ and Rτ , respectively. In our extended definition of a
relational structure, the relations take their values in Aτ . To recover the standard
case, where rS is a subset of Sατ (r), we take Aτ to be the Boolean algebra 2, and
identify a relation rS with its characteristic function.
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4. The algebra Aτ is the structure in which our logic takes its truth values, i.e.,
the truth value of an elementary proposition (F1 below) will be an element of Aτ .
It should be assumed to be a known, concrete structure. Aτ will have a presumably
different type λ = 〈Cλ, Fλ, Rλ, αλ,Aλ〉. Again, if Aτ is an algebra with no relations,
i.e., if Rλ = ∅, then Aλ is just the empty set.

5. Form the term algebra F0 = Wτ (X), i.e., the free closure of X ∪ Cτ under the
function symbols of τ . Explicitly,

(i) X ∪ Cτ ⊆ F0;
(ii) if f ∈ Fτ has arity m and t ∈ Fm

0 , then the term f(t) is in F0;
(iii) only terms obtained by the first two rules are in F0.

Then form the set R0 of all predicate symbols on F0, i.e.,

(iv) if r ∈ Rτ has arity n and u ∈ Fn
0 , then the term r(u) is in R0;

(v) only these terms are in R0.

The members of R0 are the atomic formulae of our system.

6. Form the term algebra F1 = Wλ(R0), i.e., the free closure of R0 ∪ Cλ under the
function symbols of λ. Thus,

(i) R0 ∪ Cλ ⊆ F1;
(ii) if g ∈ Fλ has arity m and t ∈ Fm

1 , then the term g(t) is in F1;
(iii) only terms obtained by the first two rules are in F1.

Thus the operation symbols of Fλ serve as logical connectives. The elements of F1

are propositions at the first level.
A similar, but distinct, role is played by the relation symbols of Rλ. Let R1 be the

set of all expressions corresponding to relations on F1 in the type λ, i.e.,

(iv) if s ∈ Rλ has arity n and u ∈ Fn
1 , then the term s(u) is in R1;

(v) only these terms are in R1.

The elements of R1 (and more generally, its operational closure F2) are propositions
at the second level. They express relations between propositions in F1.

Alternatively, in place of F1 we could use the free algebra FV(R0) for any variety
V containing Aτ . This refinement can of course be useful in practice, as for example
when we implicitly use the commutativity and associativity of logical conjunction.

7. A truth assignment is a function ϕ : R0 → Aτ . A truth assignment can be
recursively extended to a homomorphism (still denoted by ϕ to conserve notation)
ϕ : F1 → Aτ . For a term g(t) with g ∈ Fλ and t ∈ Fm

1 , where m = αλ(g) and such
that ϕ(ti) is already defined for 1 ≤ i ≤ m, define ϕ(g(t)) = gAτ (ϕ(t)).

The truth function ϕ : F0 → Aτ likewise induces a truth function for relations, so
that ϕ : R1 → Aλ by the rule ϕ(s(u)) = sAτ (ϕ(u)), whenever s ∈ Rλ and u ∈ Fn

1

with n = αλ(s). Note that ϕ(s(u)) is in Aλ.
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What we usually call the propositional calculus consist of replacing R0 by a set
Z of propositional variables, and then evaluating functions in Hom(Wλ(Z),Aτ), i.e.,
determining when two terms from Wλ(Z) are equal for all evaluations in Aτ , which
is to say in FV(Aτ )(Z), the free algebra in the variety generated by Aτ . Thus we use
standard truth tables for determining equality of terms in FBA(n), corresponding to
the case when Aτ is the two-element Boolean algebra. It is an interesting exercise to
try the analogue of this process for other choices of Aτ .

Before proceeding, let pause for a brief discussion. Thusfar we have been dealing
with the syntax of our logic. That is, we have considered the algebra of truth func-
tions, but not their interpretation in specific τ -structures. Figure 2 illustrates the
syntactic structure for the case when Aτ has both functions and relations, but Aλ is
an algebra with no relations. If Aτ had no relations, as is often the case, then only
the first level would be there. While further extensions are possible and potentially
useful, the aspect that we want to emphasize is the diversity of algebras that could
be, and are, used for Aτ , Aλ, etc. The multiple layers of syntax are of secondary
importance.

R0 = {r(u) : r ∈ Rτ0 , u ∈ Fm
0 }⋂

F1 = Wτ1(R0)

R1 = {r(u) : r ∈ Rτ1 , u ∈ Fm
1 }⋂

F2 = Wτ2(R1)

Aτ

RAτ
λ

Aλ

type λ

type µ

ϕ

ϕ

Figure 2

Presumably, the language is given. For example, the language of set theory might
include a countable set X = {x0, x1, . . . } of variables, C = {∅} so that the empty
set is a constant, relations R = {∈,≈} for membership and equality, and no proper
function symbols.

Our main choice is in the selection of Aτ . Depending on its type λ, Aτ could be
a set, an algebra, or a proper relational structure. Possibilities include any given
ordered set, semilattice, lattice, lattice with operators, Boolean algebra, etc. These
sort of structures give us the standard variations on logic. For example, we use the
real interval [0, 1] to get fuzzy logic. An interesting exercise is to construct the algebra
on the set {T, U, F}, where U corresponds to the possibility “undecidable”, using the
standard logical operations ∧, ∨ and ¬.

But Aτ need not have an apparent logical meaning. We could choose it to be
any fixed group G, or indeed any other concrete algebra. An interesting choice is the
jan-ken-po relational structure J = {{R, P, S}, <} with the relation R < P < S < R,
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or the corresponding algebra J∗ = {{R, P, S}, ∗} with a commutative, idempotent
multiplication given by the following table.

∗ R P S
R R P R
P P P S
S R S S

Or, losing idempotence, we could consider the quasi-group J◦ with the following
operation.

◦ R P S
R S P R
P P R S
S R S P

The word problem for free algebras in the variety generated by A is always of
interest. In particular, it would be worthwhile to attempt this for the algebras J∗

and J◦.
In ordinary logic, with Aτ being the Boolean algebra 2, we are able to avoid

directly considering the relation ≤ by using the implication operation →. In general,
however, we must deal with relations on Aτ . This adds another level to our syntax
structure.

Now we turn to semantics, i.e., applying the logic to describe a τ -structure S.

8. An interpretation is a mapping σ0 : X → S, where S is a structure of type
τ . Each interpretation determines a truth assignment in a natural way. The map
σ0 can be extended to a homomorphism on the term algebra Wτ (X), so we obtain
σ : F0 → S. The truth function σ̂ : R0 → Aτ is determined by the rule that if r ∈ Rτ

has arity n and u ∈ Fn
0 , then σ̂(r(u)) = rS(σ(u)). This can in turn be extended to

F1 and R1 as indicated in subsection (7).
With interpretations, it is convenient to extend the language to include the ele-

ments of S as constants. This allows us to consider propositions such as f(x, s), with
x ∈ X a variable and s ∈ S a fixed element. In the discussion of quantifiers below,
we will implicitly assume that this has been done.

9. Next we add quantifiers. The purpose of quantifiers is to eliminate free variables,
turning statements whose truth value depends on the substitution of variables into
sentences to which we can assign a truth value. To do this, we extend our logical
language by quantifier symbols Qx, and we need to determine how to extend truth
functions, or at least those arising from interpretations. That is, given a τ -structure
S, an interpretation σ0 : X → S, and a formula P involving quantifiers, how do we
determine the extension σ̂(Qx P )? The details can be organized as follows.

Let Q1 be a set of quantifier symbols. Fix the set of variables X. The extension
E1 of F1 = Wλ(R0) is formed using these rules.
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(i) R0 ⊆ E1.
(ii) If g ∈ Fλ has arity m and t ∈ Em

1 , then the term g(t) is in E1.
(iii) If Q ∈ Q1, x ∈ X and P ∈ E1, then Qx P ∈ E1.
(iv) Only terms obtained by the first three rules are in E1.

Clearly, R0 ⊆ F1 ⊆ E1. Let us use the suggestive notation E1 = Wτ1∪Q1(R0).
For P ∈ E1, define the variables occurring in P , the scope of a quantifier Q in P ,

and the free occurrences and bound occurrences of a variable in the usual way.
Now suppose we have a τ -structure S and an interpretation σ0 : X → S. The

interpretation σ̂ is already defined on F1, and we recursively extend it to the quan-
tified formulas of E1, mimicing the standard procedure as in Enderton [7]. For any
interpretation ρ0 : X → S, any variable x ∈ X and any element s ∈ S, we define
another interpretation ρ0(x|s) : X → S by

ρ0(x|s)(y) =

{
ρ0(y) if y 6= x,

s if y = x.

Each interpretation ξ0 : X → Aτ can be extended to ξ̂ : F1 → Aτ as before.
Corresponding to every quantifier symbol Q, there should be designated a function

fQ : AS
τ → Aτ , where AS

τ =
∏

s∈S Aτ . The function fQ determines the meaning of
the quantifier Q. The rules for extension are as follows.

(ii) If g ∈ Fλ and t ∈ Em
0 and σ̂(ti) has been defined for 1 ≤ i ≤ m, then

σ̂(g(t)) = gS(σ̂(t)).
(iii) If Q ∈ Q1, x ∈ X, P ∈ E0, and ρ̂(P ) has been defined for an arbitrary

interpretation ρ0, then σ̂(Qx P ) = fQ(〈σ̂(x|s)(P )) : s ∈ S〉).
Note that this just formalizes the idea that σ̂(x|s)(P ) is obtained by replacing every
free occurrence of x in P by s, and the meaning of the quantifier is some predetermined
function of the value of all those substitutions. It is not clear what restrictions we
want to put on the function fQ, if any, except that the interpretation of a given
quantifier symbol Q should have the same meaning (in some sense) on different τ -
structures S.

Two examples will suffice for now. If the algebra Aτ has a complete semilattice
operation, then we can define

σ̂(∀x P ) =
∧
s∈S

σ̂(x|s)(P ).

At the other extreme, if the type τ has constants, then for any c ∈ Cτ we can define
a quantifier Sc such that

σ̂(Scx P ) = σ̂(x|cS)(P ).
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Other kinds of quantifiers would include various versions of almost everywhere or
almost nowhere. However, if the operations of Aτ are different from those we are
accustomed to in logic, then quantifiers may have quite different meanings.

10. We say that two formulas P , R ∈ E1 are equivalent, written P ≡ R, if
σ̂(P ) = σ̂(R) for every interpretation σ̂ into a τ -structure. For example, in standard
Boolean logic we have

[(∀x r(x)) → r(y)] ≡ 1

i.e., the left hand side is a tautology and hence a valid rule of inference. The business
of predicate logic is to determine (if possible) the relation ≡ on E1.

11. We can also define satisfaction in this general setting. Again let S be a
τ -structure and σ0 : X → S an interpretation. For P ∈ E0 and a ∈ Aτ , we write

(S, σ0) � (P, a) iff σ̂(P ) = a.

This serves as a device to allow us to describe the properties of S, or to discuss models
of a collection of axioms of the form (P, a).

In the traditional setting, we write (S, σ0) � P in place of (S, σ0) � (P, 1), where 1
denotes the value true. When there are more options than just 0 and 1, we must be
more specific.

The reader is strongly encouraged to work out examples of how various logics fit
into the above scheme. The universal algebra viewpoint provides a good perspective
for analyzing and comparing different logics.

It is clear that these ideas can be extended further. First of all, we have dealt
primarily only with the first level of the general program indicated in Figure 1, but
its recursive extension to more levels is straightforward. It is a fun exercise to concoct
examples involving two or three levels of logical complexity. A more ambitious project
would be to carry the analysis further and consider such notions as completeness,
inference, and interpretability in a general setting.

The probability of any given person being abducted by aliens is fairly small. The
prospect of increasing our understanding of our own mathematics and logic by con-
sidering alternative systems is considerably less remote. It is well known that learning
a second language increases one’s appreciation of the structure and subtlety of the
first language. The same may be true of mathematics.
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