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Introduction

Allen Day introduced the doubling construction in [2]. In [3], he showed that
lower bounded images of free lattices are precisely those that can be constructed
from the 1-element lattice by sequentially doubling a certain class of convex sets.

Day’s construction is applicable to any convex subset of a finite lattice. In the
years after the classification of finite bounded lattices, some progress was made in
expanding the scope of Day’s construction. Day and Geyer classified those finite
lattices that are constructible by doubling arbitrary convex sets in [4], [7], and [11].
In [12] Nation observed that it was possible to construct new lattices by doubling
sets that were not necessarily convex, but he did not classify such sets.

Progress toward any such characterization was not made until Heiko Reppe [16]
classified those subsets of a lattice that would yield a lattice when doubled according
to Day’s doubling construction, and called them municipal sets. The present study
uses a modification of Day’s doubling construction to classify those finite lattices
that are sublattices of lattices constructible by doubling municipal sets.

In the first section we present Day’s doubling construction, and the classes of
finite lattices that can be obtained using it. Section 2 introduces our modification
of Day’s doubling construction that allows us to obtain additional finite lattices.
This modified construction is called inflation. The results presented in Section 3
classify those finite lattices that can be obtained using the inflation construction.
We restrict our attention to inflation by the 2-element lattice in Section 4 in or-
der to classify lattices that generate varieties in which every finite lattice can be
constructed by inflation using only the 2-element lattice.

1. Day’s Doubling Construction

Let P = 〈P,≤〉 be an ordered set. A subset C of P is convex if whenever a and c
are in C and a ≤ b ≤ c, then b ∈ C. An interval is a convex set. Other examples of
convex sets include lower pseudo-intervals, which are unions of intervals that share
the same least element. Dually, an upper pseudo-interval is a union of intervals
with a common greatest element.

Let L and K be ordered sets, and let S be a subset of L. Let L[K,S] denote the
disjoint union (L \ S) ∪ (S ×K). Order L[K,S] as follows.

(1) x ≤ y if x, y ∈ L \ S and x ≤L y,
(2) x ≤ (y, j) if x ∈ L \ S, y ∈ S ×K, and x ≤L y,
(3) (x, i) ≤ y if (x, i) ∈ S ×K, y ∈ L \ S, and x ≤L y,
(4) (x, i) ≤ (y, j) if (x, i), (y, j) ∈ S ×K, and (x, i) ≤S×K (y, j),
(5) (x, i) ≤ (y, j) if (x, i), (y, j) ∈ S ×K, and there exists t ∈ L \ S such that

x < t < y.

With this ordering, 〈L[K,S],≤〉 is a structure denoted L[K, S]. Day’s basic result
can be stated thusly.

Theorem 1.1. [2] If L and K are ordered sets and S ⊆ L, then L[K, S] is an
ordered set. Moreover, if L is a lattice, K a lattice with 0 and 1, and S is a convex
subset of L, then L[K, S] is a lattice.

Originally, Day used K = 2, but the extension to arbitrary K has long been
known, e.g, [5]. It does simplify matters to assume thatK is nontrivial (|K| > 1) and
connected, which we will do throughout. Day also assumed that S was convex, and
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so did not need (5). However, if S is not convex, then we can have (x, 1) ≤ t ≤ (y, 0),
so (5) is required for transitivity. Moreover, L[K, S] may be a lattice for some non-
convex subsets.

There is a natural order-preserving map h : L[K, S]→ L defined by

(1) h(x) = x if x ∈ L \ S,
(2) h(x, i) = x if x ∈ S.

If L, K and L[K, S] are lattices, then h is a lattice homomorphism.
Let K and L be lattices. A homomorphism h : K → L is called a lower bounded

homomorphism if for every a ∈ L, the set h−1(↑ a) is either empty or has a least
element. The least element of a nonempty h−1(↑ a) will be denoted βh(a), or if
the context is clear β(a). If h is lower bounded, βh : L → K is a partial mapping
whose domain is an ideal of L. Dually, h is called upper bounded if h−1(↓ a) is
empty or has a greatest element, which is denoted αh(a) or α(a), whenever it is
nonempty. For an upper bounded homomorphism, the domain of αh is a filter of
L. A homomorphism which is both upper and lower bounded is called bounded.

When h is surjective, h is lower bounded if and only if h−1(a) has a least element
for every a ∈ L. Likewise, when L is finite, h : K → L is lower bounded if and only
if h−1(a) has a least element whenever it is nonempty. On the other hand, every
homomorphism with domain K, where K is finite, is bounded.

Note that β is monotonic and a left adjoint for h, that is, a ≤ h(x) if and only
if β(a) ≤ x. It follows that β is join preserving on its domain, i.e., if h−1(↑a) 6= ∅
and h−1(↑ b) 6= ∅, then β(a ∨ b) = β(a) ∨ β(b). Similarly, α is a right adjoint of
h, i.e., h(y) ≤ a if and only if y ≤ α(a), and α is a meet preserving map on its
domain. In particular, if h is a homomorphism, then α and β are meet and join
homomorphisms respectively. We say that a lattice L is a lower bounded lattice if
every homomorphism from a finitely generated free lattice to L is a lower bounded
homomorphism.

Following Day, we define the join dependency relation D on the set of join irre-
ducible elements JI(L) by p D q if p 6= q and there exists x ∈ L with p ≤ q ∨ x,
and p � a ∨ x for every a < q. When L is finite we can replace the final condition
with p � q∗ ∨x, where q∗ denotes the unique lower cover of q. Note that p ∈ JI(L)
is join prime if and only if there exists no q ∈ JI(L) such that p D q.

We use the notation Cg(a, b) for the smallest congruence θ of L such that a θ
b. For a finite lattice L and a join irreducible p ∈ JI(L), we use the notation
Φp := Cg(p, p∗). Similarly for m ∈ MI(L) define Φm := Cg(m,m∗). Since the
congruence lattice of a lattice is distributive [6], for finite lattices every congruence
is the unique join of join prime congruences, and the join prime congruences are
precisely those that can be expressed in the form Φp or dually Φm. For p ∈ JI(L), or
m ∈MI(L), there exists a unique congruence Ψp =

∨
{Φq : Φp � Φq}, respectively

Ψn =
∨
{Φm : Φn � Φm}, which is maximal with respect to the condition that

(p, p∗) /∈ θ, or respectively (m,m∗) /∈ θ.
We say that p Dn q if there exists a finite sequence of elements ri ∈ L such that

p = r0 D r1 D · · · D rn = q.

In [3] Day established the connection between this relation, the congruences of a
finite lattice, and lower bounded lattices.

Lemma 1.2. For a finite lattice L and p, q ∈ JI(L), we have that Φp ≤ Φq if and
only if p = q or p Dn q for some n.
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A D-cycle is a sequence witnessing p Dn p for some p ∈ JI(L) and n ≥ 2. Finite
lower bounded lattices can be classified in terms of omitting D-cycles.

Theorem 1.3. A finite lattice L is lower bounded if and only if it contains no
D-cycle.

Theorem 1.4. A finite lattice L is lower bounded if and only if L can be constructed
from the 1-element lattice by doubling lower pseudo-intervals.

There is an alternative way to characterize finite lower bounded lattices which
will be particularly important in the sequel. Following Jónsson in [8], for a finite
lattice L define the sets

D0 = {p ∈ JI(L) : p is join prime} ,
Dk+1 = {p ∈ JI(L) : p D q implies q ∈ Dk} .

In those finite lattices where the concept is well-defined, the D-rank of p ∈ JI(L)
is the least integer k such that p ∈ Dk and p /∈ Dk−1, and is denoted by rkD(p).
It is important to note however that there are finite lattices where the D-rank is
undefined, e.g.,M3. It is not difficult to prove that Dk(L) = JI(L) for some k ∈ ω
if and only if L admits no D-cycles, whence a finite lattice is lower bounded if and
only if every join irreducible element has a well-defined D-rank.

Define the depth of an element x in a finite ordered set as the length of a maximal
chain in ↑ x. Given Lemma 1.2 and Theorem 1.4, we have Day’s result that the
depth of Φp in the ordered set JI(Con(L)) is equal to the D-rank of p for finite
lower bounded lattice L. In considering a lower bounded lattice constructed from
the 1-element lattice by doubling lower pseudo-intervals, as in Theorem 1.4, if b is
the unique minimum element of a lower pseudo-interval C, then q D (b, 1) holds
for no q ∈ JI(L[2, C]). It follows Φ(b,1) is a minimal element in the ordered set
JI(Con(L[2, C])).

Recall that every join prime congruence of a finite lattice L is of the form Φp
for some p ∈ JI(L). Thus, there exists a surjection from the set of join irreducible
elements of L onto the join irreducible congruences of L, all of which are join prime
since Con(L) is distributive. Combining Lemma 1.2 and Theorem 1.3 we deduce
the well known result of P. Pudlák and J. Tůma that classifies those finite lattices
such that the correspondence is one-to-one.

Theorem 1.5. [14] The following are equivalent for a finite lattice L:

(1) L is lower bounded.
(2) JI(L) = Dk(L) for some k ∈ ω.
(3) Φp = Φq implies p = q for all p, q ∈ JI(L).

Several important classes of lattices are examples of lower bounded lattices.
The class of splitting lattices introduced in [10], which are vital in studying the
equational theory of lattices, are (both lower and upper) bounded. Projective
lattices are also bounded [9]. The lattice of all subsemilattices of a finite semilattice
is lower bounded, see [1] and [15].

Recall that if L is a lattice and C ⊆ L is a convex subset, then L[2, C] is a
lattice. So far we have seen that if we restrict C to intervals or pseudo-intervals
then there is a characterization of those lattices that are constructible by doubling
such classes of subsets. The question arises: is there such a characterization for
lattices constructible from arbitrary convex sets? The answer to this question was
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first discovered by Winfried Geyer in [7], who used Formal Concept Analysis. Alan
Day quickly followed this with a solution using more traditional lattice theoretical
language in [4].

To understand this class of lattices, we first need to introduce some new concepts.
Let a ≤ b and u ≤ v in a lattice L. We say that the intervals b/a and v/u
are associates if b ∨ u = v and b ∧ u = a, or if v ∨ a = b and v ∧ a = u. We
say that b/a and v/u are projective and write b/a ≈ v/u if there exist sequences
a = x0, x1, x2, . . . , xn−1, xn = u and b = y0, y1, y2, . . . , yn−1, yn = v such that
for every 1 ≤ i ≤ n we have that yi−1/xi−1 and yi/xi are associates. Note that
b/a ≈ v/u implies Cg(b, a) = Cg(v, u).

Of particular interest is the case when L is finite and we consider intervals that
consist of covering pairs of the form p/p∗ for p ∈ JI(L) and m∗/m for m ∈MI(L).
For p, q ∈ JI(L) we say p is projective to q, and write p ≈ q, to mean p/p∗ ≈ q/q∗.
Similarly for m,n ∈ MI(L) we say m is projective to n, and write m ≈ n, to
mean m∗/m ≈ n∗/n. Lastly, we say p is projective to m, written p ≈ m to mean
p/p∗ ≈ m∗/m. When interpreted in this way, projectivity is an equivalence relation
on JI(L)∪MI(L). Note that for p, q ∈ JI(L) we have that p ≈ q implies Φp = Φq,
but not conversely in general.

p q

Figure 1. L[2, C] is neither lower nor upper bounded.

There is a classification of finite lattices constructible by doubling arbitrary con-
vex subsets that is analogous to the classification of finite lattices constructible by
doubling pseudo-intervals. Consider the example in Figure 1. The first lattice is
clearly bounded, indeed, it is distributive. However in the second lattice the ele-
ments p, q witness a D-cycle. Notice that both of the elements in this D-cycle are
contained within a single projectivity class, and are “new” join and meet irreducible
elements that were produced by the doubling.

Up until now we have been working with subclasses of convex sets that are
connected by definition. It is important to note that if C1, C2 are sets that are
connected and convex such that C1 ∪ C2 is not connected, then L[2, C1][2, C2] ∼=
L[2, C2][2, C1]. From this point forward we restrict our attention to doubling sets
that are connected and convex. For simplicity, we use the term connected convex
set to refer to such sets.
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If C is convex, then in L[2, C] it is not possible for (x, 1) to be below (y, 0) for
any x, y ∈ C. This fact, along with observations of the previous example, motivate
the following definition: a lattice L is called congruence normal if for all p ∈ JI(L)
and m ∈MI(L), Φp = Φm implies p � m.

Theorem 1.6. [7, 4] A finite lattice L is constructible from the one element lattice
by doubling convex sets if and only if L is congruence normal.

The proof is a series of technical lemmas. The specific techniques used will not
be directly applicable in the sequel, and so we refer the reader to Day’s original
paper [4]. There are however, concepts in the appendix to that article [11] that are
directly relevant in the sequel, which we discuss presently.

Recall that a finite lattice is lower bounded, i.e., constructible from the one
element lattice by doubling lower pseudo-intervals, if and only if Dk(L) = JI(L)
for some k ∈ ω. There is an analogous result for congruence normal lattices. We
define a relationship that is based on that used by Nation in [11], but which we
have extended for the present work.

F0 = {p ∈ JI(L) : p D q implies p ≈ q}
Fk+1 = {p ∈ JI(L) : p D q implies q ∈ Fk or p ≈ q} .

We define the F -rank of a join irreducible element p in a finite lattice L as we
did the D-rank, and use the notation rkF (p). As with D-rank, this may not be
defined for every join irrreducible in an arbitrary finite lattice.

Lemma 1.7. The following are equivalent for a finite lattice L.

(1) Fk(L) = JI(L) for some k ∈ ω.
(2) Φp = Φq implies p ≈ q for all p, q ∈ JI(L).

Proof. Assume that Fk(L) = JI(L) for some k ∈ ω. Let Φp = Φq for some
p, q ∈ JI(L). By Lemma 1.2 we have that p = r0 D r1 D r2 D · · · D rn = q where
n ∈ ω and ri ∈ JI(L) for every i such that 0 ≤ i ≤ n. By assumption this implies
that ri−1 ≈ ri or rkF (ri−1) > rkF (ri). In the latter case ri D

m ri−1 fails for all
m ∈ ω, whence Φri � Φri−1

, contrary to our choice of p and q. We conclude that
ri−1 ≈ ri for all i, whence p ≈ q.

Assume that for all p, q ∈ JI(L), if Φp = Φq then p ≈ q . Let p ∈ JI(L). We
proceed by induction on the depth of Φp. If Φp is maximal in the ordered set of join
prime congruences of L, then p D q implies that Φp = Φq, whence by assumption
p ≈ q. It follows that p ∈ F0. Let rkF (p) = k ≥ 1. If p D q, then Φp ≤ Φq. If
Φp = Φq then p ≈ q. Otherwise Φp < Φq whence, by the inductive assumption,
q ∈ Fk−1(L). We conclude that p ∈ Fk(L), as desired. �

The proof that (2) implies (1) in Lemma 1.7 give us the following fact that will
be frequently referred to, so we state it as a corollary.

Corollary 1.8. Let L be a finite lattice. If Fk(L) = JI(L) for some k ∈ ω, then
rkF (p) is equal to the depth of Φp in JI(Con(L)) for every p ∈ JI(L).

Lemma 1.7 is a partial generalization of Theorem 1.5. However, we are crucially
missing a characterization of finite lattices that satisfy these conditions that is anal-
ogous to lower boundedness. Clearly lower bounded lattices satisfy the conditions
of Lemma 1.7, but so do finite modular lattices, and finite geometric lattices. Ev-
ery class of finite lattices classified in the remaining sections will be subclasses of
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the class of finite lattices that satisfy these conditions as well. Clearly M3 cannot
be obtained from the one element lattice by doubling convex sets, so we will need
additional assumptions to characterize such lattices.

We say that a finite lattice L is 2-simple if the only simple lattice that is a
homomorphic image of L is the 2-element lattice. All simple homomorphic images
of a lattice L are those of the form L/θ, were θ is a maximal proper congruence
of L. Recall that the meet irreducible congruences of L are those of the form Ψp

for some p ∈ JI(L), where Ψp is the maximal congruence that does not contain
the pair (p, p∗). Thus every simple homomorphic image of L is of the form L/Ψp

for some p ∈ JI(L). Hence a finite lattice L is 2-simple if and only if for every
p ∈ JI(L) either p is join prime, or there exists some join prime q such that p Dn q.

The conditions given in Lemma 1.7 do not guarantee that a finite lattice L is
2-simple. If a finite lattice L satisfies the conditions of Lemma 1.7 it is not difficult
to see that any simple homomorphic image K of L will satisfy F0(K) = JI(K).
However, there exist simple lattices other than 2, such as M3, for which F0(K) =
JI(K). In [11], Nation introduced the following condition for a finite lattice L to
exclude such possibilities:

T: for all p, q ∈ JI(L), if p ≈ q then q ≤ q∗ ∨ p.
Nation did not address the issue of 2-simplicity. The following lemma corrects

this omission.

Lemma 1.9. Let L be a finite lattice such that Fk(L) = JI(L) and L satisfies T.
Then L is 2-simple.

Proof. The simple homomorphic images of L are those isomorphic to L/θ where θ
is a maximal proper congruence of L. Recall that Ψp =

∨
{Φq : Φq � Φp}. Thus

Ψp is maximal in Con(L) if and only if Φp is maximal in JI(Con(L)). If p is join
prime then the quotient map f : L → 2 with kernel Ψp maps ↑p to 1, and all other
elements to 0. Thus it suffices to prove that for p ∈ JI(L), if rkF (p) > 0 then Φp
is not maximal in JI(Con(L)).

Assume rkF (p) > 0. As p is not join prime, there exists q ∈ JI(L) such that
p D q, whence Φp ≤ Φq. By hypothesis this implies rkF (q) < rk(p) or p ≈ q.
If rkF (q) < rkF (p) then rkF (p) � rkF (q), whence p Dn q fails to hold for all n.
This implies that Φq � Φp, which combined with the fact that Φp ≤ Φq leads us to
conclude Φp < Φq. On the other hand if p ≈ q, we have by T that p ≤ p∗ ∨ q. As
such there exists r ∈ JI(L) such that r ≤ p∗ and p D r. Suppose p ≈ r. By T it
follows that

p ≤ p∗ ∨ r = p∗ < p,

which is a contradiction. Thus rkF (r) < rkF (p) and we can apply the previous
argument to conclude Φp < Φr. �

Finally we can give Nation’s classification of congruence normal lattices.

Theorem 1.10. [11] A finite lattice L is congruence normal if and only if Fk(L) =
JI(L) for some k ∈ ω and L satisfies T.

Nation observed in [12] that Day’s doubling construction need not be limited
to convex subsets of a lattice. In 2002 McNulty, Nation and Freese used a gen-
eralization of doubling as a critical tool in their work in [5]. The departure here
was that instead of replacing old lattice elements with a 2-element interval, other
lattices such as M3 were used. Heiko Reppe classified those subsets that can be
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used in Day’s doubling construction in [16]. Reppe’s result can likewise be extended
to apply to inflation by other finite lattices. In the next section, we will combine
these ideas to introduce a new way of looking at Day’s doubling construction and
its generalizations.

2. Constructing Finite Lattices by Inflation

One cannot double arbitrary subsets in a finite lattice and produce a lattice.
This is seen in the example given in Figure 2. Clearly the elements a and b have
no least upper bound. Note however that while the doubling does not produce a
lattice, it does produce a well defined partially ordered set.

b

a

Figure 2. A doubling that fails to produce a lattice.

The question then is what kinds of non-convex sets can be doubled and still
produce a lattice? A canonical example is due to Heiko Reppe and is reproduced
in Figure 3.

u

m

p

u

(m, 0)

(m, 1)

(p, 1)

(p, 0)

Figure 3. Reppe’s lattice.

It is not hard to check that the doubling produces a lattice despite the fact that
u witnesses the set that is doubled fails to be convex. Because the element u is not
in the set that is doubled, we get (p, 1) ≤ u and u ≤ (m, 0), and thus (p, 1) ≤ (m, 0)
in the transitive closure of the defining relation. This sort of “twisting” does not
occur when convex sets are doubled.

We would like the class of lattices obtained by doubling to be closed under
sublattices. Suppose we omit the element u but, as illustrated in Figure 4, maintain
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m

p

(m, 0)

(m, 1)

(p, 1)

(p, 0)

Figure 4. A, so far, unexplained doubling.

the ordering of the previous example with (p, 1) ≤ (m, 0). Even though the elements
p and m are in the set of elements that is doubled, we ignore the covering edge p ≺ m
during the construction.

Our first task is to define the new partial order created for a generalized type of
doubling. We will also introduce the concept of replacing elements of the original
lattice with ordered sets other than 2.

Let L and K be ordered sets. Let E be a subset of the partial order ≤L that
is transitive, i.e., if (x, y) ∈ E and (y, z) ∈ E then (x, z) ∈ E. We will normally
construct such sets by specifying a set of covering pairs and then taking their
transitive closure. One can define a new partially ordered set L ?E K by “inflating”
E as follows. Let E′ denote the set of elements of L that are included in the
relations of E. The universe of L ?E K is (L \ E′) ∪ (E′ × K). Let x, y ∈ L and
a, b ∈ K. We define a binary relation v on (L \ E′) ∪ (E′ ×K) by

(1) x v y if x ≤L y,
(2) (x, a) v y if x ≤L y,
(3) x v (y, b) if x ≤L y,
(4) (x, a) v (y, b) if x ≤L y and a ≤K b,
(5) (x, a) v (y, b) if x ≤L y, and there exists (u, v) /∈ E such that x ≤ u < v ≤

y.

While our primary interest is the case when L and K are finite lattices, this is not
required for the construction to produce an ordered set.

Lemma 2.1. The binary relation v is a partial order on (L \ E′) ∪ (E′ ×K).

The proof of Lemma 2.1 is straightforward. It is convenient to note that if U
and V are connected subsets of ≤L such that U ∪ V is not connected, then

L ?U∪V K ∼= (L ?U K) ?V K ∼= (L ?V K) ?U K.
When inflating, we therefore restrict our attention to connected sets.

There exists a canonical map h : L ?E K → L that behaves as projection onto
the first coordinate for E′ ×K, and acts as the identity on L \ E′. Note that h is
order preserving.

We take this opportunity to consider an example that illustrates the subtle,
but extremely important, ways that this definition of inflation differs from Day’s
doubling construction in the previous section. Let L be the ordered set illustrated
in Figure 5.
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a

y

b

x

(b, 0)

(b, 1)

(x, 0)

(x, 1)

(a, 1)

(a, 0)

(y, 0)

(y, 1)

Figure 5. The ordered set L (left), and the ordered set L ?E 2.

Let E := {(a, y), (b, x)} . Inflating E by the 2-element lattice, which is illustrated
by the bold edges on the left hand side of Figure 5, results in the ordered set
illustrated on the right hand side of Figure 5. Unlike previously, there exist u, v ∈ E′
such that (u, 1) ≤ (v, 0). We need not restrict ourselves to inflating by 2: L ?EM3

is illustrated in Figure 6.

Figure 6. Inflation by the ordered set M3.

The next step is to determine those sets E such that L ?E K is a lattice. Given
a lattice L and E ⊆ ≤L, for x ≤ y in L we write [y/x] ⊆ E to mean that (u, v) ∈ E
whenever x ≤ u < v ≤ y.

Definition 2.2. A subset E ⊆ ≤L is called all-or-nothing if E′ is connected and
whenever x < t < y are such that [t/x] ⊆ E and [y/t] ⊆ E, then [y/x] ⊆ E.

Note that if C is a convex subset of L, then EC := {(a, b) ∈ ≤L: a, b ∈ C} is
all-or-nothing. In this case we have that L[2, C] ∼= L ?EC

2.
A straightforward induction gives a useful equivalent formulation.

Lemma 2.3. A subset E ⊆ ≤L is all-or-nothing if and only if E′ is connected and
for all n ≥ 1, whenever x = x0 < x1 < · · · < xn = y are such that [xi+1/xi] ⊆ E
for 0 ≤ i < n, then [y/x] ⊆ E.

Corollary 2.4. Let L be a finite lattice. A subset E ⊆≤L is all-or-nothing if and
only if E′ is connected and whenever x = x0 ≺ x1 ≺ · · · ≺ xn = y is a covering
chain with (xi, xi+1) ∈ E for 0 ≤ i < n, then [y/x] ⊆ E.

Now we can specify when inflation yields a lattice.

Theorem 2.5. Given a lattice L, a subset E ⊆≤L, and a nontrivial lattice K with
0 and 1, the ordered set L ?E K is a lattice if and only if E is all-or-nothing.
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Proof. First, assume that E is not an all-or-nothing subset and let x < t < y
witness this failure, so that [t/x] ⊆ E and [y/t] ⊆ E but [y/x] 6⊆ E. In L ?E K
consider the pair (x, 1) and (t, 0). Now (t, 1) is a minimal common upper bound,
because [t/x] ⊆ E. However, (y, 0) is also above both elements, because [y/x] 6⊆ E,
while (t, 1) � (y, 0) since [t/y] ⊆ E. Hence (x, 1) and (t, 0) have no join in L ?E K.

Conversely, assume that E is an all-or-nothing set. We need to show that the
meet and join operations are well defined for every pair of elements in L ?E K. We
prove that joins are well defined and meets follow by duality. Let x, y ∈ L and
a, b ∈ K. Note that in any case below if x ∨ y /∈ E′ then the join will be x ∨ y in
L ?E K, so assume below that x ∨ y ∈ E′.

Observe that if (z, c) ≥ (x, a) and (z, c) ≥ (y, b), then z ≥ x ∨ y. Moreover,
if c � a, say, then either [(x ∨ y)/x] 6⊆ E or [z/(x ∨ y)] 6⊆ E. Using these facts
repeatedly, we calculate as follows.

(1) x ∨ y = (x ∨ y, 0).
(2) x ∨ (y, b) = (x ∨ y, 0) if [(x ∨ y)/y] 6⊆ E.
(3) x ∨ (y, b) = (x ∨ y, b) if [(x ∨ y)/y] ⊆ E.
(4) (x, a) ∨ (y, b) = (x ∨ y, 0) if [(x ∨ y)/x] 6⊆ E and [(x ∨ y)/y] 6⊆ E.
(5) (x, a) ∨ (y, b) = (x ∨ y, a) if [(x ∨ y)/x] ⊆ E and [(x ∨ y)/y] 6⊆ E.
(6) (x, a) ∨ (y, b) = (x ∨ y, b) if [(x ∨ y)/x] 6⊆ E and [(x ∨ y)/y] ⊆ E.
(7) (x, a) ∨ (y, b) = (x ∨ y, a ∨ b) if [(x ∨ y)/x] ⊆ E and [(x ∨ y)/y] ⊆ E.

This completes the proof. �

Before proceeding we take some time to compare this new inflation construction
to the method used by Reppe in [16], using sets of points rather than sets of edges.

Definition 2.6. Let L be a lattice. A connected subset M ⊆ L is called municipal
if and only if the following condition is satisfied for all x in L: if there exists a ∈M
such that a ∧ x ∈M and a ∨ x ∈M , then x ∈M .

Theorem 2.7. [16] Let L and K be finite lattices, and let S ⊆ L. Then L[K, S] is
a lattice if and only if S is municipal.

Given a connected subset S in a finite lattice L, let ES be the transitive closure
of the set of edges {(x, y) ∈ ≤L: x, y ∈ S and x ≺ y}. Using Corollary 2.4, one can
show that if S is municipal then ES is all-or-nothing. On the other hand, an all-
or-nothing set E need not be ES for S = E′. Thus, for example, the all-or-nothing
set that is inflated in Figure 4 does not correspond to EM for a municipal set M .

Sufficient for our purposes is the following observation.

Lemma 2.8. Let L and K be finite lattices, and let E be an all-or-nothing set in
L. If

(‡) x, y ∈ E′ with x ≤ y and [y/x] 6⊆ E implies that

there exists t ∈ y/x such that t /∈ E′

then E′ is municipal and L[K, E′] = L ?E K.

Indeed, the condition (‡) ensures that the ordering is the same for both con-
structions.

Theorem 2.9. Let L and K be finite lattices, and let E be an all-or-nothing set in

L. Then there exists a lattice L̂ and a municipal set M ⊆ L̂ such that L ?E K is a

sublattice of L̂[K,M ].
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Proof. Let U = {(u, v) ∈ ≤L: u, v ∈ E′, (u, v) /∈ E}. We construct L̂ as follows.

The universe of L̂ is the set of elements L∪{t(u,v) : (u, v) ∈ U}. Each t(u,v) is both

join and meet irreducible in L̂, with unique lower cover u and unique upper cover

v. The rest of ≤L̂ is inherited from ≤L. Then let M = E′. As a subset of L̂, E′

satisfies the condition (‡) of Lemma 2.8, and thus L ?E K ≤ L̂ ?E K = L̂[K,M ].
(By Corollary 2.4, it would suffice to add new elements for pairs (u, v) ∈ U with
u ≺ v.) �

Since the set of edges ES is all-or-nothing whenever S is municipal, any finite
lattice that can be constructed by inflating municipal sets can be produced by
inflating all-or-nothing sets. The other way around, Theorem 2 says that we could
forgo dealing with edges in a lattice by adding new doubly irreducible elements,
inflating a municipal set of points, and then taking a sublattice by removing the
elements that were just added. We adopt the approach of using edges and all-or-
nothing sets as it is easier to classify lattices constructible in this way than it is
to directly classify sublattices of finite lattices that can be obtained by inflating
municipal sets of points.

3. Inflation and Congruences

Having defined a new construction involving inflation by finite lattices, our goal
is to classify those finite lattices that can be constructed in this manner. In the
case of Day’s doubling construction, such lattices can be classified by the properties
of their congruences. This in turn allows these lattices to be described in terms of
a ranking system on their join irreducible elements that measures the depth of Φp
in the ordered set of join irreducible congruences of such a lattice.

The new inflation construction allows us to inflate by any finite lattice K. Clearly
K ∼= 1 ?{(1,1)} K, where 1 is the 1-element lattice and 1 denotes its single element,
so in a trivial way we can say any finite lattice can be constructed by inflation.
As we have seen, some finite lattices can be constructed by inflation using smaller
finite lattices. We say that a finite lattice L is inflatable if

(1) L is simple, or
(2) There is a sequence of lattices Li, 0 ≤ i ≤ n, such that L0 = 1, Ln ∼= L,

and Li = Li−1 where Ei−1 ⊆ ≤Li−1
is all-or-nothing and |Ki−1| < |L| for

every i.

Not every finite lattice can be constructed in such a manner. Indeed, consider the
lattice shown in Figure 7. It will be proven later that this lattice is not inflatable.
This can also be seen by trial and error.

Figure 7. A lattice that is not inflatable.
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As with those lattices constructible by doubling convex sets, we will classify
inflatable lattices by the properties of their congruences. We begin by examining
what kind of congruences can arise from inflation.

Observe that if L and K are finite lattices, E ⊆ ≤L is an all-or-nothing set and
h : L ?E K → L is the canonical homomorphism, then

αh(x)/βh(x) ∼= K

for every x ∈ E′. A weaving polynomial on a lattice L is a member of the set W of
unary functions defined recursively by the rules

(1) idL ∈W ,
(2) if w ∈W and a ∈ L, then the functions u, v such that u(x) = w(x)∧ a and

v(x) = w(x) ∨ a are in W ,
(3) only these functions are in W .

Thus every weaving polynomial looks something like

w(x) = (· · · (x ∨ s1) ∧ s2) ∨ · · · ∨ sn−1) ∧ sn),

or dually, or with some successive joins and meets.
We say that intervals y/x and t/s in a lattice L are projectively isomorphic if

y/x ≈ t/s and there exists a weaving polynomial w such that when restricted y/x
we have that w is an isomorphism of the sublattices y/x and t/s.

Lemma 3.1. Let L and K be finite lattices and let E ⊆ ≤L be an all-or-nothing
set. If x, y ∈ E′, then αh(x)/βh(x) is projectively isomorphic to αh(y)/βh(y) in
L ?E K.

Proof. The canonical homomorphism h : L ?E K → L is bounded as L and K are
finite. Let α := αh and β := βh. As E′ is connected there exists a sequence of
elements of E′ such that

β(x) = u0 ≤ v1 ≥ u1 ≤ · · · ≤ vn ≥ un = β(y),

(ui−1, vi) ∈ E, and (ui, vi) ∈ E for every i. Note that for every i we have β(vi) =
(ti, 0) and α(ui) = (si, 1) for some si, ti ∈ E′. From the definition of the join
operation in L ?E K it follows that for every 1 ≤ i ≤ n and a ∈ K

(ui−1, a) ∨ β(vi) = (vi, a),

(vi, a) ∧ α(ui) = (ui, a).

We conclude that the weaving polynomial

w(x) = (· · · (x ∨ β(v1)) ∧ (α(u1)) ∨ · · · ∨ β(vn)) ∧ α(un)).

witnesses that α(x)/β(x) is projectively isomorphic to α(y)/β(y). �

For a lattice L, let Con(L) be the lattice of congruence relations of L ordered
by inclusion. For a congruence θ ∈ Con(L) and x ∈ L, let α(x) and β(x) denote
the greatest and least members, respectively, of the θ-class [x].

Definition 3.2. A congruence θ ∈ Con(L) is an inflation congruence if

(1) for any two nontrivial θ-classes [x], [y] there is a weaving polynomial w on
L such that the restriction w : [x]→ [y] is a projective isomorphism,

(2) any two such weaving polynomials w, w′ satisfy w(t) = w′(t) for all t ∈ [x],
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(3) if [x] ≤ [y] in L/θ, then either α(x) ≤ β(y) or the maps

u : [x]→ [y] via u(s) = s ∨ β(y)

v : [y]→ [x] via v(t) = t ∧ α(x)

are inverse isomorphisms.

In view of Lemma 3.1 and the calculation in its proof, if E is a connected all-or-
nothing set in a finite lattice, then the kernel kerh of the standard map h : L ?E K
is an inflation congruence. The converse is also true.

Lemma 3.3. If θ is an inflation congruence on a finite lattice L, then there are a
finite lattice K and a connected all-or-nothing set E such that L ∼= L/θ ?E K.

Proof. Let [a] be any nontrivial block of θ, and set K = [a]. Let E be the set of
all pairs ([b], [c]) in L/θ such that [b] is nontrivial, [b] ≤ [c] and α(b) � β(c). For
these pairs, by (3) the polynomials u(s) = s ∨ β(c) and v(t) = t ∧ α(b) are inverse
projective isomorphisms between [b] and [c]. It follows from this that E is an all-or-
nothing set. For if [b] ≤ [a] ≤ [d] ≤ [c], then α(b) ≤ α(a) and β(d) ≤ β(c). Hence
α(a) � β(d) because α(b) � β(c), and so ([a], [d]) ∈ E.

We want to construct an isomorphism g : L ∼= L/θ ?E K. Consider an element
d ∈ L. If |[d]| = 1 then d /∈ E′ and set g(d) = [d]. On the other hand, if |[d]| > 1
then d ∈ E′ and there is a weaving polynomial giving a projective isomorphism
w : [d]→ [a]. In this case, set g(d) = ([d], w(d)). By (2), the map g is well-defined.

It is straightforward that g is an order-preserving bijection, but we must also
check that its inverse is order-preserving, i.e., that the order relation on L and
L/θ ?E K are the same.

Assume g(d) ≤ g(e). The crucial case is when [d], [e] are both nontrivial. Then,
for the appropriate weaving polynomials, ([d], w(d)) ≤L/θ?EK ([e], w′(e)). In partic-
ular, [d] ≤ [e]. If α(d) ≤ β(e), then in L we have d ≤ α(d) ≤ β(d) ≤ e, as desired.
Otherwise, ([d], [e]) ∈ E and w(d) ≤ w′(e) in K = [a]. As above, let v(t) = t ∧ α(d)
for t ∈ [e]. Then d = v(w′)−1w(d) by (2), whence

d = v(w′)−1w(d) ≤ v(w′)−1w′(e) = v(e) ≤ e,
so that again d ≤ e, as required. �

Note that (3) of Definition 3.2 is a local version of (2). Examples show that
in general both parts are needed. However, if K is simple and has no proper
automorphisms, e.g., K = 2, then (1) and (3) suffice.

Definition 3.4. A strictly ascending sequence 0Con(L) < θ1 < θ2 < · · · < θn =
1Con(L) in Con(L) is called an inflation sequence if n ≥ 2 and for 1 ≤ i ≤ n,
θi/θi−1 is an inflation congruence in L/θi−1.

Recursive application of Lemma 3.3 yields our main result.

Theorem 3.5. A finite lattice L is inflatable if and only if there exists an inflation
sequence in Con(L).

The classification theorem for inflatable lattices looks, at first glance, quite dif-
ferent from the classification theorem for congruence normal lattices. Clearly, such
lattices are inflatable. Given a congruence normal lattice L, we extend the partial
order on the set of join prime congruences of L. To do so, we index JI(L) as pi for
1 ≤ i ≤ n in such a way that i ≤ j implies rkF (pi) ≥ rkF (pj). Note that Φpi ≤ Φpj



INFLATION OF FINITE LATTICES ALONG ALL-OR-NOTHING SETS 15

implies i ≤ j. We may define an ascending chain of congruences from 0Con(L) to
1Con(L) by defining θ0 = 0Con(L) and

θi :=
∨
{Φpk : 1 ≤ k ≤ i}

for 1 ≤ i ≤ n.
We know from the proof of Theorem 1.10 that if x ∈ L/θi−1 and αi(x) 6= βi(x)

then αi(x)/βi(x) is projectively isomorphic to the interval hi−1(pi)/hi−1(pi)∗. We
conclude that θ0 < θ1 < θ2 < · · · < θn is an inflation sequence.

Given any inflation sequence θ0 < θ1 < θ2 < · · · < θn in Con(L) for congruence
normal lattice L, consider the interval θi/θi−1 in Con(L). If θi−1 ≤ ϕ ≤ θi then
(x, y) ∈ ϕ/θi−1 implies (x, y) is in the kernel of h1. As such, the covering pairs that
generate ϕ are all in αi(x)/βi(x) for some x ∈ L/θi. When such a pair is collapsed,
it will collapse exactly those pairs that it is projectively isomorphic to as a result of
the inflation sequence. It follows that the interval θi/θi−1 in Con(L) is isomorphic
to Con(K), where K ∼= αi(x)/βi(x) for any x ∈ L/θi−1 such that αi(x) 6= βi(x).

The class of congruence normal lattices form a prevariety : this class is closed
under homomorphic images, sublattices, and finite direct products. It is natural
to ask if the class of inflatable lattices is also a prevariety. The class of inflatable
lattices is closed under finite direct products as a result of the fact that if L1 and
L2 have inflation sequences θ0 < θ1 < θ2 < · · · < θm and ψ0 < ψ1 < ψ2 < · · · < ψn,
respectively, then we can construct an inflation sequence in L1 × L2 consisting of
congruences of the form θi × ψj .

To see that the class of inflatable lattices is closed under sublattices requires more
care. Assume inductively that L is an inflatable lattice such that every sublattice
SL ≤ L is inflatable. Let E ⊆ ≤L be an all or nothing set and K a finite lattice.
Given a sublattice S ≤ L ?E K we can construct S by beginning with some SL ≤ L
and inflating an all-or-nothing subset of E by a sublattice SK ≤ K. Note however
that for an arbitrary sublattice S we may need to perform multiple inflations, as
there is no guarantee that S ∩ (E′ ×K) is connected.

The class of inflatable lattices is, in general, not preserved under homomor-
phisms. Clearly if θ0 < θ1 < θ2 < · · · < θn in Con(L) is an inflation sequence then
L/θi is inflatable for every 0 ≤ i ≤ n. However, if θ ∈ Con(L) is not part of an
inflation sequence, then L/θ may not be inflatable, see Figure 9 below.

While inflatable lattices do not form a prevariety, when we restrict our choice
of lattices K in the construction, there are still notable structural properties that
are preserved by inflation. We say a finite lattice L is projectively simple if L is
simple and p ≈ q for all p, q ∈ JI(L). When we restrict ourselves to inflating
by projectively simple lattices, we obtain a subclass of those lattices such that
Fk(L) = JI(L) for some k ∈ ω.

Theorem 3.6. Let L be a finite lattice such that Fk(L) = JI(L) for some k ∈ ω,
E ⊆ ≤L be an all-or-nothing set, and K be a finite projectively simple lattice. Then
Fk+1(L ?E K) = JI(L ?E K).

Proof. Note that JI(L ?E K) = J−1 ∪ J0 ∪ J1 where

J−1 := {x ∈ JI(L) : x /∈ E′} ,
J0 := {(p, 0) : p ∈ JI(L) ∩ E′} ,
J1 := {(x, a) : a ∈ JI(K), w ≺ x⇒ (w, x) /∈ E} .
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The lattice K is simple, so it follows that if p ∈ J1 then Φp is the kernel of the
canonical homomorphism h : L ?E K → L. Let p, q ∈ J1 with p 6= q. We have that
p ∈ αh(x)/βh(x) and q ∈ αh(y)/βh(y) for some x, y ∈ L. Since K is projectively
simple and αh(x)/βh(x) is projectively isomorphic to αh(y)/βh(y), we conclude that
p ≈ q. As Fk(L) = JI(L), it follows by Lemma 1.7 that Fn(L ?E K) = JI(L ?E K)
for some n ∈ ω. Moreover, by Corollary 1.8 we have that rkF (p) is equal to the
depth of Φp for every p ∈ JI(L?E K). In particular, if p ∈ J1, then rkF (p) ≤ k+ 1.
This completes the proof. �

We see from the lattice shown in Figure 8 that not every lattice such that
Fk(L) = JI(L) for some k ∈ ω can be constructed from the 1-element lattice
by inflating all-or-nothing sets by projectively simple lattices. The two minimal
nontrivial congruences of L are Φp and Φq, where p and q are as indicated in Fig-
ure 8. Neither Φp nor Φq satisfies the conditions necessary to be part of an inflation
sequence, whence L is not inflatable.

q

p

Figure 8. A lattice L disproving the converse of Theorem 3.6.

4. Binary Cut-Through Codable Lattices

For a lattice congruence θ we say the norm of θ, denoted ‖θ‖, is the cardinality
of the largest block of θ.

Definition 4.1. A finite lattice L is called n-ary cut-through codable if and only if
there exists a chain

0Con(L) = θ0 < θ1 < · · · < θk = 1Con(L)

such that ‖θj/θj−1‖ ≤ n for all j ≤ k.

Lattices that are n-ary cut-through codable were studied by Sun and Li in [17].
Note that n-ary cut-through codability is preserved under the formation of sublat-
tices and finite direct products. However, Sun and Li showed that for every n there
exists a lattice that is n-ary cut-through codable and has a homomorphic image
that fails to be n-ary cut-through codable.

There is a nice description of binary cut-through codable lattices in terms of
inflation.

Theorem 4.2. A finite lattice L is binary cut-through codable if and only if L is
inflatable and Ki ∼= 2 for every 1 ≤ i ≤ n.
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Proof. Assume that L is inflatable and Ki ∼= 2 for every 1 ≤ i ≤ n. By Theorem 3.5
we know L has an inflation sequence θ0 < θ1 < θ2 < · · · < θn. By assumption for
every hi : L/θi−1 → L/θi we have that

∣∣h−1i (x)
∣∣ ≤ 2 for all x ∈ L/θi−1. It follows

that the inflation sequence witnesses that L is binary cut-through codable.
Conversely, assume that L is binary cut-through codable. Let θ0 < θ1 < θ2 <

· · · < θn in Con(L) be a chain that witnesses this. We claim that this chain is
an inflation sequence. If we prove that conditions that θ1 is an inflation congru-
ence, the desired conclusion holds by induction on n. Note that as 2 has a trivial
automorphism group, we need only show θ1 satisfies (1) and (3) of Definition 3.2.

We first reduce to the case that 0Con(L) ≺ θ1. Assume there exists a congruence
θ such that 0Con(L) < θ < θ1. By the assumption that L is binary cut-through

codable we have that
∥∥0Con(L)/θ

∥∥ = 2 and ‖θ/θ1‖ = 2. Relabeling as necessary, we
may extend our chain to include θ. Thus we can assume, without loss of generality,
that 0Con(L) ≺ θ1.

We have that θ1 = Φp for some p ∈ JI(L), whence by assumption ‖Φp‖ = 2. Let
[x] denote the block of Φp containing x for any x ∈ L. Given [a] such that |[a]| = 2,
if there is b ∈ [a] that is incomparable to a this would imply that |[a]| > 2. So we
assume b ∈ [a] and a ≺ b. We claim that p/p∗ is projectively isomorphic to b/a.

If (a, b) ∈ Φp with a < b then there exists a sequence of weaving polynomials
w1, w2, . . . , wk such that

a = w1(p∗) < w1(p) = w2(p∗) < w2(p) = · · · = wk(p∗) < wk(p) = b.

For any weaving polynomial w we have that w(p∗) ≺ w(p) or w(p∗) = w(p), once
again by the fact that ‖Φp‖ = 2. It follows that p/p∗ is projectively isomorphic to
b/a by the weaving polynomial w1, whence L satisfies both (1) and (3). �

p

q

m

Figure 9. The lattice L (left), and its quotient L/Φp (right).

In the case of binary cut-through codable lattices, because every inflation is by
2, we know that any inflation sequence may be extended to a covering chain. If L
is binary cut-through codable and θ0 < θ1 < θ2 < · · · < θn in Con(L) is a chain
that witnesses this, we know from the proof of Theorem 4.2 that this chain can
be extended to an inflation sequence. As such, we may assume θi−1 ≺ θi for all
1 ≤ i ≤ n. Thus θi = θi−1 ∨ Φp for some p ∈ JI(L). This resembles the kind
of inflation sequence that we saw with congruence normal lattices. Moreover, by
Theorems 4.2 and 3.6, we see that if L is a binary cut-through codable lattice, then
Fk(L) = JI(L) for some k ∈ ω and L is 2-simple.
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Given a finite lattice L such that Fk(L) = JI(L) for some k ∈ ω and L is 2-
simple, how can we insure that there exists an inflation sequence in Con(L) that
witnesses that L is binary cut-through codable? If L is congruence normal, any
maximal chain in Con(L) will witness that L is binary cut-through codable. Should
there exist p ∈ JI(L) and m ∈ MI(L) such that p ≤ m and p ≈ m, more care is
needed. In Figure 9 the lattice L is binary cut-through codable, but L/Φp is not
because q ≈ m.

Definition 4.3. A lattice variety V is called n-ary cut-through codable if and only
if every finite L ∈ V is n-ary cut-through codable.

As we have seen, n-ary codability is preserved by finite direct products and
sublattices. It follows, using Jónsson’s Lemma, that V ar(K) is n-ary cut-through
codable if and only if every finite lattice L that is a homomorphic image of a
sublattice of K is n-ary cut-through codable. The following was first shown by Sun
and Li.

Lemma 4.4. [17] The class of n-ary cut-through codable varieties forms a lattice
ideal in Λ, the lattice of all lattice varieties ordered by inclusion.

Clearly any finite lattice L such that V ar(L) is binary cut-through codable is
itself binary cut-through codable. However, not every lattice L that is binary cut-
through codable generates a variety V ar(L) that is binary cut-through codable,
e.g., the lattice L illustrated in Figure 9.

Even a finite lattice L such that every quotient lattice of L is binary cut through
codable may not generate a variety that is binary cut-through codable. Specifically,
L may contain a sublattice K whose homomorphic images include lattices that are
not binary cut-through codable. Such a lattice is depicted in Figure 10. In this case
L and all its quotients are binary cut-through codable, but the sublattice consisting
of the interval y/x in L is isomorphic to the lattice shown in Figure 9, which has
homomorphic images that are not binary cut-through codable.

x

p

q

y

Figure 10. A binary cut-through lattice L such that every homo-
morphic image and sublattice is binary cut-through codable, but
not every homomorphic image of a sublattice is. Thus V ar(L) is
not binary cut-through codable.
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There exists a rich class of finite lattices generating binary cut-through codable
varieties that are not congruence normal. We say that a lattice L has the binary
square property if for σ, τ ∈ Con(L) whenever σ ∧ τ ≺ σ, τ ≺ σ ∨ τ and

‖σ/σ ∧ τ‖ ≤ 2

‖τ/σ ∧ τ‖ ≤ 2

‖σ ∨ τ/σ‖ ≤ 2

then ‖σ ∨ τ/τ‖ ≤ 2.
This is a rather strong property, but we will construct an infinite class of lattices

that satisfy it. It is straightforward to show that ‖σ/σ ∧ τ‖ ≤ ‖σ ∨ τ/τ‖, so if the
latter is at most 2 then so is the former.

Lemma 4.5. If L is a binary cut-through codable lattice and S is a sublattice of L
that has the binary square property, then ‖β/α‖ = 2 for every covering pair α ≺ β
in Con(S).

Proof. Since L is binary cut-through codable, there is a covering chain 0 ≺ γ1 ≺
· · · ≺ γm = 1 in Con(L) with ‖γi/γi−1‖ = 2. The restriction of these congruences
to S may not be a covering chain in Con(S), but it can be extended to one,
yielding a covering chain 0Con(L) = ρ0 ≺ ρ1 ≺ · · · ≺ ρn = 1Con(L) in Con(S) with
‖ρi/ρi−1‖ = 2.

Let α ≺ β in Con(S). We show inductively that ‖β ∧ ρk/α ∧ ρk‖ ≤ 2. For k = 0
or k = 1 this is trivial, and for k = n it yields the desired conclusion ‖β/α‖ ≤ 2.

In the free distributive lattice generated by the two chains α < β and ρk−1 < ρk,
we have

ρk−1 ≤ ρk−1 ∨ (α ∧ ρk) ≤ ρk−1 ∨ (β ∧ ρk) ≤ ρk.
Since ρk−1 ≺ ρk, two of these three inclusions are equality and the other is strict.

First suppose ρk−1 < ρk−1 ∨ (α∧ ρk) = ρk. Note that ρk/ρk−1 projects down to
β ∧ ρk/β ∧ ρk−1, which in turn projects down to α∧ ρk/α∧ ρk−1. Thus in Con(S)
we have the square α ∧ ρk−1 ≺ α ∧ ρk, β ∧ ρk−1 ≺ β ∧ ρk, with three of the four
sides having norm at most 2 by the inductive assumption. By the binary square
property for S, the remaining side β ∧ ρk/α ∧ ρk also has norm at most 2, which
was to be proved for the induction.

Next, assume the middle inequality is strict, so that ρk−1 = ρk−1 ∨ (α ∧ ρk) <
ρk−1 ∨ (β ∧ ρk) = ρk. In this case, we claim that ρk/ρk−1 projects down to β ∧
ρk/α ∧ ρk, which will give the latter interval norm at most 2. The join relation for
projectivity is the second equality of our assumption. So we consider ρk−1 ∧ (β ∧
ρk) = β ∧ ρk−1. Now α ∧ ρk � β ∧ ρk. Using the first equality of our assumption,
α ∧ ρk ≤ β ∧ ρk−1 ≤ β ∧ ρk. Our prior work insures that β ∧ ρk � ρk−1, so the
second inequality is strict. We conclude that α∧ρk = β∧ρk−1, yielding the desired
projectivity and norm.

Finally, we consider the possibility that the third inequality is strict. But in that
case, we have β ∧ρk ≤ ρk−1, whence β ∧ρk = β ∧ρk−1 and α∧ρk = α∧ρk−1, with
‖β ∧ ρk−1/α ∧ ρk−1‖ ≤ 2 by induction. �

Theorem 4.6. Let n ≥ 3 and B(n) be the boolean algebra on n elements, i.e., the
lattice of subsets of an n element set ordered by inclusion. There exists E ⊆ ≤B(n)
such that B(n) ?E 2 generates a variety that is binary cut-through codable, and
B(n) ?E 2 is not congruence normal.
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Proof. Given B(n) with n ≥ 3, fix k such that 1 ≤ k ≤ n− 2. Let u be of height k
and v be of height k + 1 such that u ≺ v. Define

E := {(x, y) : x is of height k, y is of height k + 1, x ≺ y} \ (u, v).

This set E consists of all covering relations in B(n) between elements of heights
k and k + 1 except u ≺ v. By construction E is a connected all-or-nothing set.
Consider L := B(n) ?E 2. This new lattice is not congruence normal, as (u, 1) ≈
(v, 0) and (u, 1) ≤ (v, 0). The join irreducible elements of L are exactly the atoms
of L and elements of the form (x, 1) for all x ∈ L of height k. Moreover, (x1, 1) ≈
(x2, 1) for all x1, x2 ∈ B(n) of height k. Let θ = Φ(x,1) where x ∈ B(n) is any
element of height k.

We claim that θ is the unique least nontrivial congruence of L. To prove this,
note that every atom in L is join prime. We conclude that Φp � θ for any atom
p ∈ L. However, for any x1 ∈ B(n) of height k, there exists x2 6= x1 of height
k in B(n) with the property that (x1, 0) ∨ (x2, 1) ≥ (x1, 1) in L. As (x1, 0) has
a unique minimal nontrivial join cover that consists entirely of the atoms below
it, we have that if p is an atom such that p ≤ (x1, 0), then (x1, 1) D p. As x1
was an arbitrary element of height k in B(n) this shows that θ ≤ Φp for any atom
p ∈ L. We conclude that L is subdirectly irreducible and its unique least nontrivial
congruence is θ.

Any finite lattice in V ar(L) is isomorphic to a finite subdirect product of sub-
directly irreducible lattices in V ar(L). As a consequence of Jónsson’s Lemma any
subdirectly irreducible lattice in V ar(L) is isomorphic to a homomorphic image
of a sublattice of L. The property of being binary cut-through codable is closed
under taking sublattices of finite direct products. Thus, it suffices to show that any
homomorphic image of a sublattice of L is binary cut-through codable.

Let S be a sublattice of L. We will show that S has the binary square property,
which will complete the proof by Lemma 4.5. Let σ, τ ∈ Con(S) be such that
σ ∧ τ ≺ σ, τ ≺ σ ∨ τ and

‖σ/σ ∧ τ‖ ≤ 2

‖τ/σ ∧ τ‖ ≤ 2

‖σ ∨ τ/σ‖ ≤ 2.

This implies that ‖σ ∨ τ/σ ∧ τ‖ ≤ 4. If ‖σ ∨ τ/σ ∧ τ‖ ≤ 3 then the interval is a
chain and the proof is straightforward. So assume ‖σ ∨ τ/σ ∧ τ‖ = 4.

Let [a] ∈ S/(σ∧τ) be such that the σ∨τ/σ∧τ block containing [a] has cardinality
4. Say [b], [c], [d] ∈ S/(σ ∧ τ) such that ([a], [d]) ∈ σ ∨ τ/σ ∧ τ , [a] < [b] < [d], and
[a] < [c] < [d]. There are two possible cases to consider. In both of these cases
we may assume that the ordering on the elements a, b, c, d ∈ S is the same as the
ordering on their respective σ ∧ τ classes and that meets and joins are preserved.

In the first case [a] ≺ [b] ≺ [d] and [a] ≺ [c] ≺ [d]. Say ([a], [b]) ∈ σ/σ∧ τ , whence
([c], [d]) ∈ σ/σ ∧ τ . We then have ([a], [c]), ([b], [d]) ∈ τ/σ ∧ τ and the desired
conclusion follows.

In the second case [a] ≺ [b] ≺ [c] ≺ [d]. If ([a], [b]), ([c], [d]) ∈ τ/σ ∧ τ then the
desired conclusion follows immediately. Otherwise, we have that ([a], [b]), ([c], [d]) ∈
σ/σ ∧ τ and ([b], [c]) ∈ τ/σ ∧ τ . The only interval in the original lattice L such
that there exist elements a < b < c < d with b/a ≈ d/c is the four element chain
(u, 0) ≺ (u, 1) ≺ (v, 0) ≺ (v, 1). We conclude that these elements are all present in
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S. Moreover we may assume without loss of generality that a = (u, 0), b = (u, 1),
c = (v, 0), d = (v, 1).

Given that ([a], [b]), ([c], [d]) ∈ σ/σ∧ τ it follows that (v, 0) ≈ (u, 1) in S, whence
there exists (x, 1) ∈ S such that (x, 1) and (v, 0) are associates. In L the only
associates of (v, 0) are such that (v, 1)/(v, 0) projects down to (x, 1)/(x, 0). It
follows that in S

(v, 0) ∧ (x, 0) = (x, 0),

(u, 1) ∧ (x, 0) = x ∧ u,
(x, 0) ∨ (u, 0) = (v, 0),

(x ∧ u) ∨ (u, 0) = (u, 0).

These identities show that in S, the interval (v, 1)/(u, 1) projects down to to the
interval (x, 0)/(x ∧ v), which projects up to the interval (v, 0)/(u, 0). This implies
τ ≥ σ, contrary to assumption. Therefore, our second case does not occur for S
and the proof is complete. �

As a lattice variety is determined by its subdirectly irreducible members, we
obtain the following corollary.

Corollary 4.7. There exist infinitely many binary cut-through codable lattice va-
rieties containing finite lattices that are not congruence normal.
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