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Introduction

In the early 1890’s, Richard Dedekind was working on a revised and enlarged
edition of Dirichlet’s Vorlesungen über Zahlentheorie, and asked himself the following
question: Given three subgroups A, B, C of an abelian group G, how many different
subgroups can you get by taking intersections and sums, e.g., A + B, (A + B) ∩ C,
etc. The answer, as we shall see, is 28 (Chapter 7). In looking at this and related
questions, Dedekind was led to develop the basic theory of lattices, which he called
Dualgruppen. His two papers on the subject, Über Zerlegungen von Zahlen durch
ihre größten gemeinsamen Teiler (1897) and Über die von drei Moduln erzeugte
Dualgruppe (1900), are classics, remarkably modern in spirit, which have inspired
many later mathematicians.

“There is nothing new under the sun,” and so Dedekind found. Lattices, espe-
cially distributive lattices and Boolean algebras, arise naturally in logic, and thus
some of the elementary theory of lattices had been worked out earlier by Ernst
Schröder in his book Die Algebra der Logik. Nonetheless, it is the connection be-
tween modern algebra and lattice theory, which Dedekind recognized, that provided
the impetus for the development of lattice theory as a subject, and which remains
our primary interest.

Unfortunately, Dedekind was ahead of his time in making this connection, and
so nothing much happened in lattice theory for the next thirty years. Then, with
the development of universal algebra in the 1930’s by Garrett Birkhoff, Oystein Ore
and others, Dedekind’s work on lattices was rediscovered. From that time on, lattice
theory has been an active and growing subject, in terms of both its application to
algebra and its own intrinsic questions.

These notes are intended as the basis for a one-semester introduction to lattice
theory. Only a basic knowledge of modern algebra is presumed, and I have made no
attempt to be comprehensive on any aspect of lattice theory. Rather, the intention
is to provide a textbook covering what we lattice theorists would like to think every
mathematician should know about the subject, with some extra topics thrown in
for flavor, all done thoroughly enough to provide a basis for a second course for the
student who wants to go on in lattice theory or universal algebra.

It is a pleasure to acknowledge the contributions of students and colleagues to
these notes. I am particularly indebted to Michael Tischendorf, Alex Pogel and the
referee for their comments. Mahalo to you all.

Finally, I hope these notes will convey some of the beauty of lattice theory as I
learned it from two wonderful teachers, Bjarni Jónsson and Bob Dilworth.



1. Ordered Sets

“And just how far would you like to go in?” he asked....
“Not too far but just far enough so’s we can say that we’ve been there,” said
the first chief.
“All right,” said Frank, “I’ll see what I can do.”

–Bob Dylan

In group theory, groups are defined algebraically as a model of permutations.
The Cayley representation theorem then shows that this model is “correct”: every
group is isomorphic to a group of permutations. In the same way, we want to define
a partial order to be an abstract model of set containment ⊆, and then we should
prove a representation theorem to show that this is what we have.

A partially ordered set, or more briefly just ordered set, is a system P = (P,≤)
where P is a nonempty set and ≤ is a binary relation on P satisfying, for all
x, y, z ∈ P ,

(1) x ≤ x, (reflexivity)
(2) if x ≤ y and y ≤ x, then x = y, (antisymmetry)
(3) if x ≤ y and y ≤ z, then x ≤ z. (transitivity)

The most natural example of an ordered set is P(X), the collection of all subsets of
a set X, ordered by ⊆. Another familiar example is Sub G, all subgroups of a group
G, again ordered by set containment. You can think of lots of examples of this type.
Indeed, any nonempty collection Q of subsets of X, ordered by set containment,
forms an ordered set.

More generally, if P is an ordered set and Q ⊆ P , then the restriction of ≤ to Q
is a partial order, leading to a new ordered set Q.

The set < of real numbers with its natural order is an example of a rather special
type of partially ordered set, namely a totally ordered set, or chain. C is a chain
if for every x, y ∈ C, either x ≤ y or y ≤ x. At the opposite extreme we have
antichains, ordered sets in which ≤ coincides with the equality relation =.

We say that x is covered by y in P, written x ≺ y, if x < y and there is no z ∈ P
with x < z < y. It is clear that the covering relation determines the partial order
in a finite ordered set P. In fact, the order ≤ is the smallest reflexive, transitive
relation containing ≺. We can use this to define a Hasse diagram for a finite ordered
set P: the elements of P are represented by points in the plane, and a line is drawn
from a up to b precisely when a ≺ b. In fact this description is not precise, but it
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(a) chain

(b) antichain

(c) P{x, y, z}

(d) (e)

Note

(d) ∼= (e)

Figure 1.1

is close enough for government purposes. In particular, we can now generate lots of
examples of ordered sets using Hasse diagrams, as in Figure 1.1.

The natural maps associated with the category of ordered sets are the order
preserving maps, those satisfying the condition x ≤ y implies f(x) ≤ f(y). We
say that P is isomorphic to Q, written P ∼= Q, if there is a map f : P → Q
which is one-to-one, onto, and both f and f−1 are order preserving, i.e., x ≤ y iff
f(x) ≤ f(y).

With that we can state the desired representation of any ordered set as a system
of sets ordered by containment.

Theorem 1.1. Let Q be an ordered set, and let φ : Q→ P(Q) be defined by

φ(x) = {y ∈ Q : y ≤ x}.

Then Q is isomorphic to the range of φ ordered by ⊆.

Proof. If x ≤ y, then z ≤ x implies z ≤ y by transitivity, and hence φ(x) ⊆ φ(y).
Since x ∈ φ(x) by reflexivity, φ(x) ⊆ φ(y) implies x ≤ y. Thus x ≤ y iff φ(x) ⊆ φ(y).
That φ is one-to-one then follows by antisymmetry. �

A subset I of P is called an order ideal if x ≤ y ∈ I implies x ∈ I. The set
of all order ideals of P forms an ordered set O(P) under set inclusion. The map
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φ of Theorem 1.1 embeds Q in O(Q). Note that we have the additional property
that the intersection of any collection of order ideals of P is again in an order ideal
(which may be empty).

Given an ordered set P = (P,≤), we can form another ordered set Pd = (P,≤d),
called the dual of P, with the order relation defined by x ≤d y iff y ≤ x. In the finite
case, the Hasse diagram of Pd is obtained by simply turning the Hasse diagram of
P upside down (see Figure 1.2). Many concepts concerning ordered sets come in
dual pairs, where one version is obtained from the other by replacing “≤” by “≥”
throughout.

a

a

b

bc

c

P Pd
Figure 1.2

For example, a subset F of P is called an order filter if x ≥ y ∈ F implies x ∈ F .
An order ideal of P is an order filter of Pd, and vice versa.

The ordered set P has a maximum (or greatest) element if there exists x ∈ P such
that y ≤ x for all y ∈ P . An element x ∈ P is maximal if there is no element y ∈ P
with y > x. Clearly these concepts are different. Minimum and minimal elements
are defined dually.

The next lemma is simple but particularly important.

Lemma 1.2. The following are equivalent for an ordered set P.
(1) Every nonempty subset S ⊆ P contains an element minimal in S.
(2) P contains no infinite descending chain

a0 > a1 > a2 > . . .

(3) If
a0 ≥ a1 ≥ a2 ≥ . . .

in P, then there exists k such that an = ak for all n ≥ k.

Proof. The equivalence of (2) and (3) is clear, and likewise that (1) implies (2).
There is, however, a subtlety in the proof of (2) implies (1). Suppose P fails (1) and
that S ⊆ P has no minimal element. In order to find an infinite descending chain in
S, rather than just arbitrarily long finite chains, we must use the Axiom of Choice.
One way to do this is as follows.
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Let f be a choice function on the subsets of S, i.e., f assigns to each nonempty
subset T ⊆ S an element f(T ) ∈ T . Let a0 = f(S), and for each i ∈ ω define
ai+1 = f({s ∈ S : s < ai}); the argument of f in this expression is nonempty
because S has no minimal element. The sequence so defined is an infinite descending
chain, and hence P fails (2). �

The conditions described by the preceding lemma are called the descending chain
condition (DCC). The dual notion is called the ascending chain condition (ACC).
These conditions should be familiar to you from ring theory (for ideals). The next
lemma just states that ordered sets satisfying the DCC are those for which the
principle of induction holds.

Lemma 1.3. Let P be an ordered set satisfying the DCC. If ϕ(x) is a statement
such that

(1) ϕ(x) holds for all minimal elements of P , and
(2) whenever ϕ(y) holds for all y < x, then ϕ(x) holds,

then ϕ(x) is true for every element of P .

Note that (1) is in fact a special case of (2). It is included in the statement of the
lemma because in practice minimal elements usually require a separate argument
(like the case n = 0 in ordinary induction).

The proof is immediate. The contrapositive of (2) states that the set F = {x ∈
P : ϕ(x) is false} has no minimal element. Since P satisfies the DCC, F must
therefore be empty.

We now turn our attention more specifically to the structure of ordered sets.
Define the width of an ordered set P by

w(P) = sup{|A| : A is an antichain in P}

where |A| denotes the cardinality of A.1 A second invariant is the chain covering
number c(P), defined to be the least cardinal γ such that P is the union of γ chains
in P. Because no chain can contain more than one element of a given antichain, we
must have |A| ≤ |I| whenever A is an antichain in P and P =

⋃
i∈I Ci is a chain

covering. Therefore
w(P) ≤ c(P)

for any ordered set P. The following result, due to R. P. Dilworth [2], says in
particular that if P is finite, then w(P) = c(P).

1Note that the width function w(P) does not distinguish, for example, between ordered sets

which contain arbitrarily large finite antichains and those which contain a countably infinite an-

tichain. For this reason, in ordered sets of infinite width it is sometimes useful to consider the

function µ(P), which is defined to be the least cardinal κ such that κ+ 1 > |A| for every antichain

A of P. We will restrict our attention to w(P).
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Theorem 1.4. If w(P) is finite, then w(P) = c(P).

Our discussion of the proof will take the scenic route. We begin with the case
when P is finite, using H. Tverberg’s nice proof [11].

Proof in the finite case. We need to show c(P) ≤ w(P), which is done by induction
on |P |. Let w(P) = k, and let C be a maximal chain in P. If P is a chain,
w(P) = c(P) = 1, so assume C 6= P. Because C can contain at most one element of
any maximal antichain, the width w(P−C) is either k or k−1, and both possibilities
can occur. If w(P −C) = k− 1, then P −C is the union of k− 1 chains, whence P
is a union of k chains.

So suppose w(P − C) = k, and let A = {a1, . . . , ak} be a maximal antichain in
P − C. As |A| = k, it is also a maximal antichain in P. Set

L = {x ∈ P : x ≤ ai for some i},
U = {x ∈ P : x ≥ aj for some j}.

Since every element of P is comparable with some element of A, we have P = L∪U ,
while A = L∩U . Moreover, the maximality of C insures that the largest element of
C does not belong to L (remember A ⊆ P −C), so |L| < |P |. Dually, |U | < |P | also.
Hence L is a union of k chains, L = D1∪· · ·∪Dk, and similarly U = E1∪· · ·∪Ek as
a union of chains. By renumbering, if necessary, we may assume that ai ∈ Di ∩ Ei
for 1 ≤ i ≤ k, so that Ci = Di ∪ Ei is a chain. Thus

P = L ∪ U = C1 ∪ · · · ∪ Ck

is a union of k chains. �
So now we want to consider an infinite ordered set P of finite width k. Not

surprisingly, we will want to use one of the 210 equivalents of the Axiom of Choice!
(See H. Rubin and J. Rubin [9].) This requires some standard terminology.

Let P be an ordered set, and let S be a subset of P . We say that an element
x ∈ P is an upper bound for S if x ≥ s for all s ∈ S. An upper bound x need not
belong to S. We say that x is the least upper bound for S if x is an upper bound
for S and x ≤ y for every upper bound y of S. If the least upper bound of S exists,
then it is unique. Lower bound and greatest lower bound are defined dually.

Theorem 1.5. The following set theoretic axioms are equivalent.
(1) (Axiom of Choice) If X is a nonempty set, then there is a map φ :

P(X)→ X such that φ(A) ∈ A for every nonempty A ⊆ X.
(2) (Zermelo well-ordering principle) Every nonempty set admits a well-

ordering (a total order satisfying the DCC ).
(3) (Hausdorff maximality principle) Every chain in an ordered set P can

be embedded in a maximal chain.
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(4) (Zorn’s Lemma) If every chain in an ordered set P has an upper bound in
P, then P contains a maximal element.

(5) If every chain in an ordered set P has a least upper bound in P, then P
contains a maximal element.

The proof of Theorem 1.5 is given in Appendix 2.
Our plan is to use Zorn’s Lemma to prove the compactness theorem (due to

K. Gödel [5]), and then the compactness theorem to prove the infinite case of Dil-
worth’s theorem. We need to first recall some of the basics of sentential logic.

Let S be a set, whose members will be called sentence symbols. Initially the
sentence symbols carry no intrinsic meaning; in applications they will correspond to
various mathematical statements.

We define well formed formulas (wff) on S by the following rules.
(1) Every sentence symbol is a wff.
(2) If α and β are wffs, then so are (¬α), (α ∧ β) and (α ∨ β).
(3) Only symbols generated by the first two rules are wffs.

The set of all wffs on S is denoted by S.2 Of course, we think of ¬, ∧ and ∨ as
corresponding to “not”, “and” and “or”, respectively.

A truth assignment on S is a map ν : S → {T, F}. Each truth assignment has a
natural extension ν : S → {T, F}. The map ν is defined recursively by the rules

(1) ν(¬ϕ) = T if and only if ν(ϕ) = F ,
(2) ν(ϕ ∧ ψ) = T if and only if ν(ϕ) = T and ν(ψ) = T ,
(3) ν(ϕ ∨ ψ) = T if and only if ν(ϕ) = T or ν(ψ) = T (including the case that

both are equal to T ).
A set Σ ⊆ S is satisfiable if there exists a truth assignment ν such that ν(φ) = T

for all φ ∈ Σ. Σ is finitely satisfiable if every finite subset Σ0 ⊆ Σ is satisfiable.
Note that these concepts refer only to the internal consistency of Σ; there is so far
no meaning attached to the sentence symbols themselves.

Theorem 1.6. (The compactness theorem) A set of wffs is satisfiable if and
only if it is finitely satisfiable.

Proof. Let S be a set of sentence symbols and S the corresponding set of wffs.
Assume that Σ ⊆ S is finitely satisfiable. Using Zorn’s Lemma, let ∆ be maximal
in P(S) such that

(1) Σ ⊆ ∆,
(2) ∆ is finitely satisfiable.

We claim that for all ϕ ∈ S, either ϕ ∈ ∆ or (¬ϕ) ∈ ∆ (but of course not both).
Otherwise, by the maximality of ∆, we could find a finite subset ∆0 ⊆ ∆ such

that ∆0 ∪ {ϕ} is not satisfiable, and a finite subset ∆1 ⊆ ∆ such that ∆1 ∪ {¬ϕ} is

2Technically, S is just the absolutely free algebra generated by S with the operation symbols

given in (2).
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not satisfiable. But ∆0∪∆1 is satisfiable, say by a truth assignment ν. If ν(ϕ) = T ,
this contradicts the choice of ∆0, while ν(¬ϕ) = T contradicts the choice of ∆1. So
the claim holds.

Now define a truth assignment µ as follows. For each sentence symbol p ∈ S,
define

µ(p) = T iff p ∈ ∆ .

Now we claim that for all ϕ ∈ S, µ(ϕ) = T iff ϕ ∈ ∆. This will yield µ(ϕ) = T for
all ϕ ∈ Σ, so that Σ is satisfiable.

To prove this last claim, let G = {ϕ ∈ S : µ(ϕ) = T iff ϕ ∈ ∆}. We have S ⊆ G,
and we need to show that G is closed under the operations ¬, ∧ and ∨, so that
G = S.

(1) Suppose ϕ = ¬β with β ∈ G. Then, using the first claim,

µ(ϕ) = T iff µ(β) = F

iff β /∈ ∆
iff ¬β ∈ ∆
iff ϕ ∈ ∆ .

Hence ϕ = ¬β ∈ G.
(2) Suppose ϕ = α∧ β with α, β ∈ G. Note that α∧β ∈ ∆ iff α ∈ ∆ and β ∈ ∆.

For if α ∧ β ∈ ∆, since {α ∧ β,¬α} is not satisfiable we must have α ∈ ∆, and
similarly β ∈ ∆. Conversely, if α ∈ ∆ and β ∈ ∆, then since {α, β,¬(α ∧ β)} is not
satisfiable, we have α ∧ β ∈ ∆. Thus

µ(ϕ) = T iff µ(α) = T and µ(β) = T

iff α ∈ ∆ and β ∈ ∆

iff (α ∧ β) ∈ ∆
iff ϕ ∈ ∆.

Hence ϕ = (α ∧ β) ∈ G.
(3) The case ϕ = α ∨ β is similar to (2). �
We return to considering an infinite ordered set P of width k. Let S = {cxi : x ∈

P, 1 ≤ i ≤ k}. We think of cxi as corresponding to the statement “x is in the i-th
chain.” Let Σ be all sentences of the form

(a) cx1 ∨ · · · ∨ cxk

for x ∈ P , and

(b) ¬(cxi ∧ cyi)
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for all incomparable pairs x, y ∈ P and 1 ≤ i ≤ k. By the finite version of Dilworth’s
theorem, Σ is finitely satisfiable, so by the compactness theorem Σ is satisfiable, say
by ν. We obtain the desired representation by putting Ci = {x ∈ P : ν(cxi) = T}.
The sentences (a) insure that C1∪· · ·∪Ck = P , and the sentences (b) say that each
Ci is a chain.

This completes the proof of Theorem 1.4.
A nice example due to M. Perles shows that Dilworth’s theorem is no longer true

when the width is allowed to be infinite [7]. Let κ be an infinite ordinal,3 and let P
be the direct product κ × κ, ordered pointwise. Then P has no infinite antichains,
so w(P) = ℵ0, but c(P) = |κ|.

There is a nice discussion of the consequences and extensions of Dilworth’s The-
orem in Chapter 1 of [1]. Algorithmic aspects are discussed in Chapter 11 of [3],
while a nice alternate proof appears in F. Galvin [4].

It is clear that the collection of all partial orders on a set X, ordered by set
inclusion, is itself an ordered set PO(X). The least member of PO(X) is the
equality relation, corresponding to the antichain order. The maximal members of
PO(X) are the various total (chain) orders on X. Note that the intersection of a
collection of partial orders on X is again a partial order. The next theorem, due
to E. Szpilrajn, expresses an arbitrary partial ordering as an intersection of total
orders [10].

Theorem 1.7. Every partial ordering on a set X is the intersection of the total
orders on X containing it.

Szpilrajn’s theorem is an immediate consequence of the next lemma.

Lemma 1.8. Given an ordered set (P,≤) and a 6≤ b, there exists an extension ≤∗
of ≤ such that (P,≤∗) is a chain and b ≤∗ a.

Proof. Let a � b in P. Define

x ≤′ y if


x ≤ y
or
x ≤ b and a ≤ y.

It is straightforward to check that this is a partial order with b ≤′ a.
If P is finite, repeated application of this construction yields a total order ≤∗

extending ≤′, so that b ≤∗ a. For the infinite case, we can either use the compactness
theorem, or perhaps easier Zorn’s Lemma (the union of a chain of partial orders on
X is again one) to obtain a total order ≤∗ extending ≤′. �

Define the dimension d(P) of an ordered set P to be the smallest cardinal κ
such that the order ≤ on P is the intersection of κ total orders. The next result
summarizes two basic facts about the dimension.

3See Appendix 1.
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Theorem 1.9. Let P be an ordered set. Then

(1) d(P) is the smallest cardinal γ such that P can be embedded into the direct
product of γ chains,

(2) d(P) ≤ c(P).

Proof. First suppose≤ is the intersection of total orders ≤i (i ∈ I) on P . If we let Ci
be the chain (P,≤i), then it is easy to see that the natural map ϕ : P →

∏
i∈I Ci,

with (ϕ(x))i = x for all x ∈ P , satisfies x ≤ y iff ϕ(x) ≤ ϕ(y). Hence ϕ is an
embedding.

Conversely, assume ϕ : P →
∏
i∈I Ci is an embedding of P into a direct product of

chains. We want to show that this leads to a representation of ≤ as the intersection
of |I| total orders. Define

x Ri y if


x ≤ y
or
ϕ(x)i < ϕ(y)i .

You should check that Ri is a partial order extending ≤. By Lemma 1.8 each Ri
can be extended to a total order ≤i extending ≤. To see that ≤ is the intersection
of the ≤i’s, suppose x � y. Since ϕ is an embedding, then ϕ(x)i � ϕ(y)i for some
i. Thus ϕ(x)i > ϕ(y)i, implying y Ri x and hence y ≤i x, or equivalently x �i y (as
x 6= y), as desired.

Thus the order on P is the intersection of κ total orders if and only if P can be
embedded into the direct product of κ chains, yielding (1).

For (2), assume P =
⋃
j∈J Cj with each Cj a chain. Then, for each j ∈ J , the

ordered set O(Cj) of order ideals of Cj is also a chain. Define a map ϕ : P →∏
j∈J O(Cj) by (ϕ(x))j = {y ∈ Cj : y ≤ x}. (Note ∅ ∈ O(Cj), and (ϕ(x))j = ∅

is certainly possible.) Then ϕ is clearly order-preserving. On the other hand, if
x � y in P and x ∈ Cj , then x ∈ (ϕ(x))j and x /∈ (ϕ(y))j , so (ϕ(x))j * (ϕ(y))j and
ϕ(x) � ϕ(y). Thus P can be embedded into a direct product of |J | chains. Using
(1), this shows d(P ) ≤ c(P ). �

Now we have three invariants defined on ordered sets: w(P ), c(P ) and d(P ).
The exercises will provide you an opportunity to work with these in concrete cases.
We have shown that w(P ) ≤ c(P ) and d(P ) ≤ c(P ), but width and dimension are
independent. Indeed, if κ is an ordinal and κd its dual, then κ × κd has width |κ|
but dimension 2. It is a little harder to find examples of high dimension but low
width (necessarily infinite by Dilworth’s theorem), but it is possible (see [6] or [8]).

This concludes our brief introduction to ordered sets per se. We have covered
only the most classical results of what is now an active field of research, supporting
its own journal, Order.
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Exercises for Chapter 1

1. Draw the Hasse diagrams for all 4-element ordered sets (up to isomorphism).
2. Let N denote the positive integers. Show that the relation a | b (a divides b)

is a partial order on N . Draw the Hasse diagram for the ordered set of all divisors
of 60.

3. A partial map on a set X is a map σ : S → X where S = dom σ is a subset of
X. Define σ ≤ τ if dom σ ⊆ dom τ and τ(x) = σ(x) for all x ∈ dom σ. Show that
the collection of all partial maps on X is an ordered set.

4. (a) Give an example of a map f : P → Q which is one-to-one, onto and
order-preserving, but not an isomorphism.

(b) Show that the following are equivalent for ordered sets P and Q.
(i) P ∼= Q (as defined before Theorem 1.1).

(ii) There exists f : P � Q such that f(x) ≤ f(y) iff x ≤ y. (� means the map
is onto.)

(iii) There exist f : P → Q and g : Q→ P , both order-preserving, with gf = idP
and fg = idQ.

5. Find all order ideals of the rational numbers Q with their usual order.
6. Prove that all chains in an ordered set P are finite if and only if P satisfies

both the ACC and DCC.
7. Find w(P), c(P) and d(P) for
(a) an antichain A with |A| = κ, where κ is a cardinal,
(b) Mκ, where κ is a cardinal, the ordered set diagrammed in Figure 1.3(a).
(c) an n-crown, the ordered set diagrammed in Figure 1.3(b).
(d) P(X) with X a finite set,
(e) P(X) with X infinite.

c1 cκ

a1 a2 a3 an

b1 b2 b3 bn

Figure 1.3

8. Embed Mn (2 ≤ n < ∞) into a direct product of two chains. Express the
order on Mn as the intersection of two totally ordered extensions.

9. Let P be a finite ordered set with at least ab + 1 elements. Prove that P
contains either an antichain with a+ 1 elements, or a chain with b+ 1 elements.
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10. Phillip Hall proved that if X is a finite set and S1, . . . , Sn are subsets of X,
then there is a system of distinct representatives (SDR) a1, . . . , an with aj ∈ Sj if
and only if for all 1 ≤ k ≤ n and distinct indices i1, . . . , ik we have |

⋃
1≤j≤k Sij | ≥ k.

(a) Derive this result from Dilworth’s theorem.
(b) Prove Marshall Hall’s extended version: If Si (i ∈ I) are finite subsets of a

(possibly infinite) set X, then they have an SDR if and only if the condition
of P. Hall’s theorem holds for every n.

11. Let R be a binary relation on a set X which contains no cycle of the form
x0 R x1 R . . . R xn R x0 with xi 6= xi+1. Show that the reflexive transitive closure
of R is a partial order.

12. A reflexive, transitive, binary relation is called a quasiorder.
(a) Let R be a quasiorder on a set X. Define x ≡ y if xR y and y Rx. Prove

that ≡ is an equivalence relation, and that R induces a partial order on X/≡.
(b) Let P be an ordered set, and define a relation � on the subsets of P by

X � Y if for each x ∈ X there exists y ∈ Y with x ≤ y. Verify that � is a
quasiorder.

13. Let ω1 denote the first uncountable ordinal, and let P be the direct product
ω1 × ω1. Prove that every antichain of P is finite, but c(P) = ℵ1.
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Phys. 37 (1930), 349–360.

6. J. B. Nation, D. Pickering and J. Schmerl, Dimension may exceed width, Order 5 (1988),

21–22.

7. M. A. Perles, On Dilworth’s theorem in the infinite case, Israel J. Math. 1 (1963), 108–109.
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2. Semilattices, Lattices and Complete Lattices

There’s nothing quite so fine
As an earful of Patsy Cline.

–Steve Goodman

The most important partially ordered sets come endowed with more structure
than that. For example, the significant feature about PO(X) for Theorem 1.7 is
not just its partial order, but that it is closed under intersection. In this chapter we
will meet several types of structures which arise naturally in algebra.

A semilattice is an algebra S = (S, ∗) satisfying, for all x, y, z ∈ S,

(1) x ∗ x = x,
(2) x ∗ y = y ∗ x,
(3) x ∗ (y ∗ z) = (x ∗ y) ∗ z.

In other words, a semilattice is an idempotent commutative semigroup. The symbol
∗ can be replaced by any binary operation symbol, and in fact we will most often
use one of ∨, ∧, + or ·, depending on the setting. The most natural example of
a semilattice is (P(X),∩), or more generally any collection of subsets of X closed
under intersection. Thus the semilattice PO(X) of partial orders on X is naturally
contained in (P(X2),∩).

Theorem 2.1. In a semilattice S, define x ≤ y if and only if x ∗ y = x. Then
(S,≤) is an ordered set in which every pair of elements has a greatest lower bound.
Conversely, given an ordered set P with that property, define x ∗ y = g.l.b. (x, y).
Then (P, ∗) is a semilattice.

Proof. Let (S, ∗) be a semilattice, and define ≤ as above. First we check that ≤ is
a partial order.

(1) x ∗ x = x implies x ≤ x.
(2) If x ≤ y and y ≤ x, then x = x ∗ y = y ∗ x = y.
(3) If x ≤ y ≤ z, then x ∗ z = (x ∗ y) ∗ z = x ∗ (y ∗ z) = x ∗ y = x, so x ≤ z.

Since (x ∗ y) ∗ x = x ∗ (x ∗ y) = (x ∗ x) ∗ y = x ∗ y) we have x ∗ y ≤ x; similarly
x ∗ y ≤ y. Thus x ∗ y is a lower bound for {x, y}. To see that it is the greatest lower
bound, suppose z ≤ x and z ≤ y. Then z ∗ (x ∗ y) = (z ∗ x) ∗ y = z ∗ y = z, so
z ≤ x ∗ y, as desired.

The proof of the converse is likewise a direct application of the definitions, and
is left to the reader. �
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A semilattice with the above ordering is usually called a meet semilattice, and as
a matter of convention ∧ or · is used for the operation symbol. In Figure 2.1, (a)
and (b) are meet semilattices, while (c) fails on several counts.

(a) (b) (c)
Figure 2.1

Sometimes it is more natural to use the dual order, setting x ≥ y iff x ∗ y = x.
In that case, S is referred to as a join semilattice, and the operation is denoted by
∨ or +.

A subsemilattice of S is a subset T ⊆ S which is closed under the operation ∗ of
S: if x, y ∈ T then x∗y ∈ T . Of course, that makes T a semilattice in its own right,
since the equations defining a semilattice still hold in (T, ∗).1

Similarly, a homomorphism between two semilattices is a map h : S → T with
the property that h(x ∗ y) = h(x) ∗ h(y). An isomorphism is a homomorphism that
is one-to-one and onto. It is worth noting that, because the operation is determined
by the order and vice versa, two semilattices are isomorphic if and only if they are
isomorphic as ordered sets.

The collection of all order ideals of a meet semilattice S forms a semilattice O(S)
under set intersection. The mapping from Theorem 1.1 gives us a set representation
for meet semilattices.

Theorem 2.2. Let S be a meet semilattice. Define φ : S → O(S) by

φ(x) = {y ∈ S : y ≤ x}.

Then S is isomorphic to (φ(S),∩).

Proof. We already know that φ is an order embedding of S into O(S). Moreover,
φ(x∧ y) = φ(x)∧ φ(y) because x∧ y is the greatest lower bound of x and y, so that
z ≤ x ∧ y if and only if z ≤ x and z ≤ y. �

A lattice is an algebra L = (L,∧,∨) satisfying, for all x, y, z ∈ S,
(1) x ∧ x = x and x ∨ x = x,

1However, it is not enough that the elements of T form a semilattice under the ordering ≤. For

example, the sets {1, 2}, {1, 3} and ∅ do not form a subsemilattice of (P({1, 2, 3}),∩).
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(2) x ∧ y = y ∧ x and x ∨ y = y ∨ x,
(3) x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z,
(4) x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x.

The first three pairs of axioms say that L is both a meet and join semilattice. The
fourth pair (called the absorption laws) say that both operations induce the same
order on L. The lattice operations are sometimes denoted by · and +; for the sake
of consistency we will stick with the ∧ and ∨ notation.

An example is the lattice (P(X),∩,∪) of all subsets of a set X, with the usual
set operations of intersection and union. This turns out not to be a very general
example, because subset lattices satisfy the distributive law

(D) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

The corresponding lattice equation does not hold in all lattices: x ∧ (y ∨ z) =
(x ∧ y) ∨ (x ∧ z) fails, for example, in the two lattices in Figure 2.2. Hence we
cannot expect to prove a representation theorem which embeds an arbitrary lattice
in (P(X),∩,∪) for some set X (although we will prove such a result for distributive
lattices). A more general example would be the lattice Sub(G) of all subgroups of
a group G. Most of the remaining results in this section are designed to show how
lattices arise naturally in mathematics, and to point out additional properties which
some of these lattices have.

M3 N5
Figure 2.2

Theorem 2.3. In a lattice L, define x ≤ y if and only if x ∧ y = x. Then (L,≤)
is an ordered set in which every pair of elements has a greatest lower bound and
a least upper bound. Conversely, given an ordered set P with that property, define
x ∧ y = g.l.b. (x, y) and x ∨ y = l.u.b. (x, y). Then (P,∧,∨) is a lattice.

The crucial observation in the proof is that, in a lattice, x ∧ y = x if and only
if x ∨ y = y by the absorption laws. The rest is a straightforward extension of
Theorem 2.1.

This time we leave it up to you to figure out the correct definitions of sublattice,
homomorphism and isomorphism for lattices. If a lattice has a least element, it is
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denoted by 0; the greatest element, if it exists, is denoted by 1. Of special importance
are the quotient (or interval) sublattices:

a/b = {x ∈ L : b ≤ x ≤ a}
a/0 = {x ∈ L : x ≤ a}
1/a = {x ∈ L : a ≤ x}

The latter notations are used irrespective of whether L actually has a least element
0 or a greatest element 1.2

One further bit of notation will prove useful. For a subset A of an ordered set P,
let Au denote the set of all upper bounds of A, i.e.,

Au = {x ∈ P : x ≥ a for all a ∈ A}

=
⋂
a∈A

1/a.

Dually, A` is the set of all lower bounds of A,

A` = {x ∈ P : x ≤ a for all a ∈ A}

=
⋂
a∈A

a/0.

Let us consider the question of when a subset A of an ordered set P has a least
upper bound. Clearly Au must be nonempty, and this will certainly be the case if P
has a greatest element. If moreover it happens that Au has a greatest lower bound
z in P, then in fact z ∈ Au, i.e., a ≤ z for all a ∈ A, because each a ∈ A is a lower
bound for Au. Therefore by definition z is the least upper bound of A. In this case
we say that the join of A exists, and write z =

∨
A (treating the join as a partially

defined operation).
But if S is a finite meet semilattice with a greatest element, then

∧
Au exists for

every A ⊆ S. Thus we have the following result.

Theorem 2.4. Let S be a finite meet semilattice with greatest element 1. Then S
is a lattice with the join operation defined by

x ∨ y =
∧
{x, y}u =

∧
(1/x ∩ 1/y).

This result not only yields an immediate supply of lattice examples, but it pro-
vides us with an efficient algorithm for deciding when a finite ordered set is a lattice:

2There are several commonly used ways of denoting interval sublattices; the one we have adopted

is as good as any, but hardly universal. The most common alternative has a/b = [b, a], a/0 = (a]

and 1/a = [a). The notations ↓a for a/0 and ↑a for 1/a are also widely used.
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if P has a greatest element and every pair of elements has a meet, then P is a lattice.
The dual version is of course equally useful.

Every finite subset of a lattice has a greatest lower bound and a least upper bound,
but these bounds need not exist for infinite subsets. Let us define a complete lattice
to be an ordered set L in which every subset A has a greatest lower bound

∧
A and a

least upper bound
∨
A.3 Clearly every finite lattice is complete, and every complete

lattice is a lattice with 0 and 1 (but not conversely). Again P(X) is a natural (but
not very general) example of a complete lattice, and Sub(G) is a better one. The
rational numbers with their natural order form a lattice which is not complete.

Likewise, a complete meet semilattice is an ordered set S with a greatest element
and the property that every nonempty subset A of S has a greatest lower bound∧
A. By convention, we define

∧
∅ = 1, the greatest element of S. The analogue of

Theorem 2.4 is as follows.

Theorem 2.5. If L is a complete meet semilattice, then L is a complete lattice with
the join operation defined by∨

A =
∧
Au =

∧
(
⋂
a∈A

1/a).

Complete lattices abound in mathematics because of their connection with closure
systems. We will introduce three different ways of looking at these things, each with
certain advantages, and prove that they are equivalent.

A closure system on a set X is a collection C of subsets of X which is closed under
arbitrary intersections (including the empty intersection, so

⋂
∅ = X ∈ C). The sets

in C are called closed sets. By Theorem 2.5, the closed sets of a closure system form
a complete lattice. Various examples come to mind:

(i) closed subsets of a topological space,
(ii) subgroups of a group,
(iii) subspaces of a vector space,
(iv) order ideals of an ordered set,
(v) convex subsets of euclidean space <n.

You can probably think of other types of closure systems, and more will arise as we
go along.

A closure operator on a set X is a map Γ : P(X) → P(X) satisfying, for all
subsets A,B ⊆ X,

(1) A ⊆ Γ(A),
(2) A ⊆ B implies Γ(A) ⊆ Γ(B),
(3) Γ(Γ(A)) = Γ(A).

3We could have defined complete lattices as a type of infinitary algebra satisfying some axioms,

but since these kinds of structures are not very familiar the above approach seems more natural.

Following standard usage, we only allow finitary operations in an algebra (see Appendix 3). Thus a

complete lattice as such, with its arbitrary operations
∨
A and

∧
A, does not count as an algebra.
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The closure operators associated with the closure systems above are as follows:
(i) X a topological space and Γ(A) the closure of A,

(ii) G a group and Sg(A) the subgroup generated by A,
(iii) V a vector space and Span(A) the set of all linear combinations of elements

of A,
(iv) P an ordered set and O(A) the order ideal generated by A,
(v) <n and H(A) the convex hull of A.

For a closure operator, a set D is called closed if Γ(D) = D, or equivalently (by
(3)), if D = Γ(A) for some A.

A set of closure rules on a set X is a collection Σ of properties ϕ(S) of subsets
of X, where each ϕ(S) has one of the forms

x ∈ S

or
Y ⊆ S =⇒ z ∈ S

with x, z ∈ X and Y ⊆ X. (Note that the first type of rule is a degenerate case
of the second, taking Y = ∅.) A subset D of X is said to be closed with respect to
these rules if ϕ(D) is true for each ϕ ∈ Σ. The closure rules corresponding to our
previous examples are:

(i) all rules Y ⊆ S =⇒ z ∈ S where z is an accumulation point of Y ,
(ii) the rule 1 ∈ S and all rules

x ∈ S =⇒ x−1 ∈ S
{x, y} ⊆ S =⇒ xy ∈ S

with x, y ∈ G,
(iii) 0 ∈ S and all rules {x, y} ⊆ S =⇒ ax+ by ∈ S with a, b scalars,
(iv) for all pairs with x < y in P the rules y ∈ S =⇒ x ∈ S,
(v) for all x, y ∈ <n and 0 < t < 1, the rules {x, y} ⊆ S =⇒ tx+ (1− t)y ∈ S.

So the closure rules just list the properties that we check to determine if a set S is
closed or not.

The following theorem makes explicit the connection between these ideas.

Theorem 2.6. (1 ) If C is a closure system on a set X, then the map ΓC : P(X)→
P(X) defined by

ΓC(A) =
⋂
{D ∈ C : A ⊆ D}

is a closure operator. Moreover, ΓC(A) = A if and only if A ∈ C.
(2 ) If Γ is a closure operator on a set X, let ΣΓ be the set of all rules

c ∈ S
17



where c ∈ Γ(∅), and all rules

Y ⊆ S =⇒ z ∈ S

with z ∈ Γ(Y ). Then a set D ⊆ X satisfies all the rules of ΣΓ if and only if
Γ(D) = D.

(3 ) If Σ is a set of closure rules on a set X, let CΣ be the collection of all subsets
of X which satisfy all the rules of Σ. Then CΣ is a closure system.

In other words, the collection of all closed sets of a closure operator forms a
complete lattice, and the property of being a closed set can be expressed in terms of
rules which are clearly preserved by set intersection. It is only a slight exaggeration
to say that all important lattices arise in this way. As a matter of notation, we will
also use CΓ to denote the lattice of Γ-closed sets, even though this particular variant
is skipped in the statement of the theorem.

Proof. Starting with a closure system C, define ΓC as above. Observe that ΓC(A) ∈ C
for any A ⊆ X, and Γ(D) = D for every D ∈ C. Therefore ΓC(ΓC(A)) = ΓC(A), and
the other axioms for a closure operator hold by elementary set theory.

Given a closure operator Γ, it is clear that Γ(D) ⊆ D iff D satisfies all the rules
of ΣΓ. Likewise, it is immediate because of the form of the rules that CΣ is always
a closure system. �

Note that if Γ is a closure operator on a set X, then the operations on CΓ are
given by ∧

i∈I
Di =

⋂
i∈I

Di∨
i∈I

Di = Γ(
⋃
i∈I

Di).

For example, in the lattice of closed subsets of a topological space, the join is the
closure of the union. In the lattice of subgroups of a group, the join of a collection
of subgroups is the subgroup generated by their union. The lattice of order ideals
is somewhat exceptional in this regard, because the union of a collection of order
ideals is already an order ideal.

One type of closure operator is especially important. If A = 〈A,F,C〉 is an
algebra, then S ⊆ A is a subalgebra of A if c ∈ S for every constant c ∈ C, and
{s1, . . . , sn} ⊆ S implies f(s1, . . . , sn) ∈ S for every basic operation f ∈ F . Of
course these are closure rules, so the intersection of any collection of subalgebras of
A is again one.4 For a subset B ⊆ A, define

Sg(B) =
⋂
{S : S is a subalgebra of A and B ⊆ S}.

4If A has no constants, then we have to worry about the empty set. We want to allow ∅ in the

subalgebra lattice in this case, but realize that it is an abuse of terminology to call it a subalgebra.
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By Theorem 2.6, Sg is a closure operator, and Sg(B) is of course the subalgebra
generated by B. The corresponding lattice of closed sets is CSg = Sub A, the lattice
of subalgebras of A.

Galois connections provide another source of closure operators. These are rele-
gated to the exercises not because they are unimportant, but rather to encourage
you to grapple with how they work on your own.

For completeness, we include a representation theorem.

Theorem 2.7. If L is a complete lattice, define a closure operator ∆ on L by

∆(A) = {x ∈ L : x ≤
∨
A}.

Then L is isomorphic to C∆.

The isomorphism ϕ : L → C∆ is just given by ϕ(x) = x/0.

The representation of L as a closure system given by Theorem 2.7 can be greatly
improved upon in some circumstances. Here we will give a better representation for
lattices satisfying the ACC and DCC. In Chapter 3 we will do the same for another
class called algebraic lattices.

An element q of a lattice L is called join irreducible if q =
∨
F for a finite set F

implies q ∈ F , i.e., q is not the join of other elements. The set of all join irreducible
elements in L is denoted by J(L). Note that according to the definition 0 /∈ J(L),
as 0 =

∨
∅.5

Lemma 2.8. If a lattice L satisfies the DCC, then every element of L is a join of
finitely many join irreducible elements.

Proof. Suppose some element of L is not a join of join irreducible elements. Let x
be a minimal such element. Then x is not itself join irreducible, so x =

∨
F for

some finite set F of elements strictly below x. By the minimality of x, each f ∈ F
is the join of a finite set Gf ⊆ J(L). Then x =

∨
f∈F

∨
Gf , a contradiction. �

If L also satisfies the ACC, then join irreducible elements can be identified as
those which cover a unique element, viz.,

q∗ =
∨
{x ∈ L : x < q}.

The representation of lattices satisfying both chain conditions (in particular, finite
lattices) as a closure system is quite straightforward.

5This convention is not universal, as join irreducible is sometimes defined by q = r ∨ s implies

q = r or q = s, which is equivalent for nonzero elements.
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Theorem 2.9. Let L be a lattice satisfying the ACC and DCC. Let Σ be the set of
all closure rules on J(L) of the form

F ⊆ S =⇒ q ∈ S

where q is join irreducible, F is a finite subset of J(L), and q ≤
∨
F . (Include the

degenerate cases p ∈ S =⇒ q ∈ S for q ≤ p in J(L).) Then L is isomorphic to
the lattice CΣ of Σ-closed sets.

Proof. Define order preserving maps f : L → CΣ and g : CΣ → L by

f(x) = x/0 ∩ J(L)

g(S) =
∨
S.

Now gf(x) = x for all x ∈ L by Lemma 2.8. On the other hand, fg(S) = S for any
Σ-closed set, because by the ACC we have

∨
S =

∨
F for some finite F ⊆ S, which

puts every join irreducible q ≤
∨
F in S by the closure rules. �

As an example of how we might apply these ideas, suppose we want to find
the subalgebra lattice of a finite algebra A. Now Sub A is finite, and every join
irreducible subalgebra is of the form Sg(a) for some a ∈ A (though not necessarily
conversely). Thus we may determine Sub A by first finding all the 1-generated
subalgebras Sg(a), and then computing the joins of sets of these.

Let us look at another type of closure operator. Of course, an ordered set need
not be complete. We say that a pair (L, φ) is a completion of the ordered set P if
L is a complete lattice and φ is an order embedding of P into L. A subset Q of a
complete lattice L is join dense if for every x ∈ L,

x =
∨
{q ∈ Q : q ≤ x}.

A completion (L, φ) is join dense if φ(P ) is join dense in L, i.e., for every x ∈ L,

x =
∨
{φ(p) : φ(p) ≤ x}.

It is not hard to see that every completion of P contains a join dense completion.
For, given a completion (L, φ) of P, let L′ be the set of all elements of L of the
form

∨
{φ(p) : p ∈ A} for some subset A ⊆ P , including

∨
∅ = 0. Then L′ is

a complete join subsemilattice of L, and hence a complete lattice. Moreover, L′
contains φ(p) for every p ∈ P , and (L′, φ) is a join dense completion of P. Hence
we may reasonably restrict our attention to join dense completions.

Our first example of a join dense completion is the lattice of order ideals O(P).
Order ideals are the closed sets of the closure operator on P given by

O(A) =
⋃
a∈A

a/0,
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and the embedding φ is given by φ(p) = p/0. Note that the union of order ideals is
again an order ideal, so O(P) obeys the distributive law (D).

Another example is the MacNeille completion M(P), a.k.a. normal completion,
completion by cuts [2]. For subsets S, T ⊆ P recall that

Su = {x ∈ P : x ≥ s for all s ∈ S}
T ` = {y ∈ P : y ≤ t for all t ∈ T}.

The MacNeille completion is the lattice of closed sets of the closure operator on P
given by

M(A) = (Au)` ,

i.e., M(A) is the set of all lower bounds of all upper bounds of A. Note that M(A)
is an order ideal of P. Again the map φ(p) = p/0 embeds P into M(P).

Now every join dense completion preserves all existing meets in P: if A ⊆ P and A
has a greatest lower bound b =

∧
A in P, then φ(b) =

∧
φ(A) (see Exercise 10). The

MacNeille completion has the nice property that it also preserves all existing joins in
P: if A has a least upper bound c =

∨
A in P, then φ(c) = c/0 = M(A) =

∨
φ(A).

In fact, every join dense completion corresponds to a closure operator on P .

Theorem 2.10. Let P be an ordered set. If Φ is a closure operator on P such that
Φ({p}) = p/0 for all p ∈ P , then (CΦ, φ) is a join dense completion of P, where
φ(p) = p/0. Conversely, if (L, φ) is a join dense completion of P, then the map Φ
defined by

Φ(A) = {q ∈ P : φ(q) ≤
∨
a∈A

φ(a)}

is a closure operator on P , Φ({p}) = p/0 for all p ∈ P , and CΦ ∼= L.

Proof. For the first part, it is clear that (CΦ, φ) is a completion of P. It is a join
dense one because every closed set must be an order ideal, and thus for every C ∈ CΦ,

C =
∨
{Φ({p}) : p ∈ C}

=
∨
{p/0 : p/0 ⊆ C}

=
∨
{φ(p) : φ(p) ≤ C}.

For the converse, it is clear that Φ defined thusly satisfies A ⊆ Φ(A), and A ⊆ B
implies Φ(A) ⊆ Φ(B). But we also have

∨
q∈Φ(A) φ(q) =

∨
a∈A φ(a), so Φ(Φ(A)) =

Φ(A).
To see that CΦ ∼= L, let f : CΦ → L by f(A) =

∨
a∈A φ(a), and let g : L → CΦ

by g(x) = {p ∈ P : φ(p) ≤ x}. Then both maps are order preserving, fg(x) = x for
x ∈ L by the definition of join density, and gf(A) = Φ(A) = A for A ∈ CΦ. Hence
both maps are isomorphisms. �
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Let K(P) be the collection of all closure operators on P such that Γ({p}) = p/0
for all p ∈ P . There is a natural order on K(P): Γ ≤ ∆ if Γ(A) ⊆ ∆(A) for all
A ⊆ P . Moreover, K(P) is closed under arbitrary meets, where by definition

(
∧
i∈I

Γi)(A) =
⋂
i∈I

Γi(A).

The least and greatest members of K(P) are the order ideal completion and the
MacNeille completion, respectively.

Theorem 2.11. K(P) is a complete lattice with least element O and greatest ele-
ment M .

Proof. The condition Γ({p}) = p/0 implies that O(A) ⊆ Γ(A) for all A ⊆ P , which
makes O the least element of K(P). On the other hand, for any Γ ∈ K(P), if b ≥ a
for all a ∈ A, then b/0 = Γ(b/0) ⊇ Γ(A). Thus

Γ(A) ⊆
⋂
b∈Au

(b/0) = (Au)` = M(A),

so M is its greatest element. �
The lattices K(P) have an interesting structure, which was investigated by the

author and Alex Pogel in [3].
We conclude this section with a classic theorem due to A. Tarski and Anne Davis

(Morel) [1], [4].

Theorem 2.12. A lattice L is complete if and only if every order preserving map
f : L → L has a fixed point.

Proof. One direction is easy. Given a complete lattice L and an order preserving
map f : L → L, put A = {x ∈ L : f(x) ≥ x}. Note A is nonempty as 0 ∈ A.
Let a =

∨
A. Since a ≥ x for all x ∈ A, f(a) ≥

∨
x∈A f(x) ≥

∨
x∈A x = a. Thus

a ∈ A. But then a ≤ f(a) implies f(a) ≤ f2(a), so also f(a) ∈ A, whence f(a) ≤ a.
Therefore f(a) = a.

Conversely, let L be a lattice which is not a complete lattice.
Claim 1: Either L has no 1 or there exists a chain C ⊆ L which satisfies the

ACC and has no meet. For suppose L has a 1 and that every chain C in L satisfying
the ACC has a meet. We will show that every subset S ⊆ L has a join, which makes
L a complete lattice by the dual of Theorem 2.5.

Consider Su, the set of all upper bounds of S. Note Su 6= ∅ because 1 ∈ L. Let P
denote the collection of all chains C ⊆ Su satisfying the ACC, ordered by C1 ≤ C2

if C1 is a filter (dual ideal) of C2.
The order on P insures that if Ci (i ∈ I) is a chain of chains in P, then

⋃
i∈I Ci ∈

P. Hence by Zorn’s Lemma, P contains a maximal element Cm. By hypothesis
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∧
Cm exists in L, say

∧
Cm = a. In fact, a =

∨
S. For if s ∈ S, then s ≤ c for all

c ∈ Cm, so s ≤
∧
Cm = a. Thus a ∈ Su, i.e., a is an upper bound for S. If a � t for

some t ∈ Su, then we would have a > a∧ t ∈ Su, and the chain Cm ∪ {a ∧ t} would
contradict the maximality of Cm. Therefore a =

∧
Su =

∨
S. This proves Claim 1;

Exercise 11 indicates why the argument is necessarily a bit involved.
If L has a 1, let C be a chain satisfying the ACC but having no meet; otherwise

take C = ∅. Dualizing the preceding argument, let Q be the set of all chains D ⊆ C`
satisfying the DCC, ordered by D1 ≤ D2 if D1 is an ideal of D2. Now Q could be
empty, but only when C is not; if nonempty, Q has a maximal member Dm. Let
D = Dm if Q 6= ∅, and D = ∅ otherwise.

Claim 2: For all x ∈ L, either there exists c ∈ C with x � c, or there exists
d ∈ D with x � d. Supposing otherwise, let x ∈ L with x ≤ c for all c ∈ C and x ≥ d
for all d ∈ D. (The assumption x ∈ C` means we are in the case Q 6= ∅.) Since
x ∈ C` and

∧
C does not exist, there is a y ∈ C` such that y � x. So x∨ y > x ≥ d

for all d ∈ D, and the chain D ∪ {x ∨ y} contradicts the maximality of D = Dm in
Q.

Now define a map f : L → L as follows. For each x ∈ L, put

C(x) = {c ∈ C : x � c} ,
D(x) = {d ∈ D : x � d} .

We have shown that one of these two sets is nonempty for each x ∈ L. If C(x) 6= ∅,
let f(x) be its largest element (using the ACC); otherwise let f(x) be the least
element of D(x) (using the DCC). Now for any x ∈ L, either x � f(x) or x � f(x),
so f has no fixed point.

It remains to check that f is order preserving. Suppose x ≤ y. If C(x) 6= ∅ then
f(x) ∈ C and f(x) � y (else f(x) ≥ y ≥ x); hence C(y) 6= ∅ and f(y) ≥ f(x).
So assume C(x) = ∅, whence f(x) ∈ D. If perchance C(y) 6= ∅ then f(y) ∈ C, so
f(x) ≤ f(y). On the other hand, if C(y) = ∅ and f(y) ∈ D, then x � f(y) (else
y ≥ x ≥ f(y)), so again f(x) ≤ f(y). Therefore f is order preserving. �

Exercises for Chapter 2

1. Draw the Hasse diagrams for
(a) all 5 element (meet) semilattices,
(b) all 6 element lattices,
(c) the lattice of subspaces of the vector space <2.

2. Prove that a lattice which has a 0 and satisfies the ACC is complete.
3. For the cyclic group Z4, give explicitly the subgroup lattice, the closure oper-

ator Sg, and the closure rules for subgroups.
4. Define a closure operator F on <n by the rules {x, y} ⊆ S =⇒ tx+(1−t)y ∈ S

for all t ∈ <. Describe F (A). What is the geometric interpretation of F?
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5. Prove that the following are equivalent for a subset Q of a complete lattice L.

(1) Q is join dense in L, i.e., x =
∨
{q ∈ Q : q ≤ x} for every x ∈ L.

(2) Every element of L is a join of elements in Q.
(3) If y < x in L, then there exists q ∈ Q with q ≤ x but q � y.

6. Find the completions O(P) andM(P) for the ordered sets in Figures 2.1 and
2.2.

7. Find the lattice K(P) of all join dense completions of the ordered sets in
Figures 2.1 and 2.2.

8. Show that the MacNeille operator satisfies M(A) = A iff A = B` for some
B ⊆ P .

9. (a) Prove that if (L, φ)) is a join dense completion of the ordered set P, then
φ preserves all existing greatest lower bounds in P.

(b) Prove that the MacNeille completion preserves all existing least upper bounds
in P.

10. Prove that if φ is an order embedding of P into a complete lattice L, then φ
extends to an order embedding of M(P) into L.

11. Show that ω×ω1 has no cofinal chain. (A subset C ⊆ P is cofinal if for every
x ∈ P there exists c ∈ C with x ≤ c.)

12. Following Morgan Ward [5], we can generalize the notion of a closure operator
as follows. Let L be a complete lattice. (For the closure operators on a set X, L
will be P(X).) A closure operator on L is a function f : L→ L which satisfies, for
all x, y ∈ L,

(i) x ≤ f(x),
(ii) x ≤ y implies f(x) ≤ f(y),
(iii) f(f(x)) = f(x).

(a) Prove that Cf = {x ∈ L : f(x) = x} is a complete meet subsemilattice of L.
(b) For any complete meet subsemilattice S of L, prove that the function fS

defined by fS(x) =
∧
{s ∈ S : s ≥ x} is a closure operator on L.

13. Let A and B be sets, and R ⊆ A×B a relation. For X ⊆ A and Y ⊆ B let

σ(X) = {b ∈ B : x R b for all x ∈ X}
π(Y ) = {a ∈ A : a R y for all y ∈ Y }.

Prove the following claims.

(a) X ⊆ πσ(X) and Y ⊆ σπ(Y ) for all X ⊆ A, Y ⊆ B.
(b) X ⊆ X ′ implies σ(X) ⊇ σ(X ′), and Y ⊆ Y ′ implies π(Y ) ⊇ π(Y ′).
(c) σ(X) = σπσ(X) and π(Y ) = πσπ(Y ) for all X ⊆ A, Y ⊆ B.
(d) πσ is a closure operator on A, and Cπσ = {π(Y ) : Y ⊆ B}. Likewise σπ is a

closure operator on B, and Cσπ = {σ(X) : X ⊆ A}.
(e) Cπσ is dually isomorphic to Cσπ.
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The maps σ and π are said to establish a Galois connection between A and B. The
most familiar example is when A is a set, B a group acting on A, and a R b means
b fixes a. As another example, the MacNeille completion is Cπσ for the relation ≤
as a subset of P × P.
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3. Algebraic Lattices

The more I get, the more I want it seems ....
–King Oliver

In this section we want to focus our attention on the kind of closure operators
and lattices which are associated with modern algebra. A closure operator Γ on a
set X is said to be algebraic if for every B ⊆ X,

Γ(B) =
⋃
{Γ(F ) : F is a finite subset of B}.

Equivalently, Γ is algebraic if the right hand side RHS of the above expression is
closed for every B ⊆ X, since B ⊆ RHS ⊆ Γ(B) holds for any closure operator.

A closure rule is said to be finitary if it is a rule of the form x ∈ S or the form
F ⊆ S =⇒ z ∈ S with F a finite set. Again the first form is a degenerate case of
the second, taking F = ∅. It is not hard to see that a closure operator is algebraic
if and only if it is determined by a set of finitary closure rules (see Theorem 3.1(1)).

Let us catalogue some important examples of algebraic closure operators.
(1) Let A be any algebra with only finitary operations – for example, a group,

ring, vector space, semilattice or lattice. The closure operator Sg on A such that
Sg(B) is the subalgebra of A generated by B is algebraic, because we have a ∈ Sg(B)
if and only if a can be expressed as a term a = t(b1, . . . , bn) for some finite subset
{b1, . . . , bn} ⊆ B, in which case a ∈ Sg({b1, . . . , bn}). The corresponding complete
lattice is of course the subalgebra lattice Sub A.

(2) Looking ahead a bit (to Chapter 5), the closure operator Cg on A × A such
that Cg(B) is the congruence on A generated by the set of pairs B is also algebraic.
The corresponding complete lattice is the congruence lattice Con A. For groups
this is isomorphic to the normal subgroup lattice; for rings, it is isomorphic to the
lattice of ideals.

(3) For ordered sets, the order ideal operator O is algebraic. In fact we have

O(B) =
⋃
{O({b}) : b ∈ B}

for all B ⊆ P .
(4) Let S = (S;∨) be a join semilattice with a least element 0. A subset J of S

is called an ideal if
(1) 0 ∈ J ,
(2) x, y ∈ J implies x ∨ y ∈ J ,
(3) z ≤ x ∈ J implies z ∈ J .
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An ideal J is a principal ideal if J = x/0 for some x ∈ S. Since ideals are defined
by closure rules, the intersection of a set of ideals of S is again one.1 The closure
operator I on S such that I(B) is the ideal of S generated by B is given by

I(B) = {x ∈ S : x ≤
∨
F for some finite F ⊆ B}.

Hence I is algebraic. The ideal lattice of a join semilattice is denoted by I(S).
(5) An ideal of a lattice is defined in the same way, since every lattice is in

particular a join semilattice. The ideal lattice of a lattice L is likewise denoted by
I(L). The dual of an ideal in a lattice is called a filter. (See Exercise 4.)

On the other hand, it is not hard to see that the closure operators associated with
the closed sets of a topological space are usually not algebraic, since the closure de-
pends on infinite sequences. The closure operator M associated with the MacNeille
completion is not in general algebraic, as is seen by considering the partially ordered
set P consisting of an infinite set X and all of its finite subsets, ordered by set con-
tainment. This ordered set is already a complete lattice, and hence its own MacNeille
completion. For any subset Y ⊆ X, let Ŷ = {S ∈ P : S ⊆ Y }. If Y is an infinite
proper subset of X, then M(Ŷ ) = X̂ ⊃ Ŷ =

⋃
{M(F ) : F is a finite subset of Ŷ }.

We need to translate these ideas into the language of lattices. Let L be a complete
lattice. An element x ∈ L is compact if whenever x ≤

∨
A, then there exists a finite

subset F ⊆ A such that x ≤
∨
F . The set of all compact elements of L is denoted by

Lc. An elementary argument shows that Lc is closed under finite joins and contains
0, so it is a join semilattice with a least element. However, Lc is usually not closed
under meets (see Figure 3.1(a), wherein x and y are compact but x ∧ y is not).

A lattice L is said to be algebraic (or compactly generated) if it is complete and Lc
is join dense in L, i.e., x =

∨
(x/0 ∩ Lc) for every x ∈ L. Clearly every finite lattice

is algebraic. More generally, every element of a complete lattice L is compact, i.e.,
L = Lc if and only if L satisfies the ACC.

For an example of a complete lattice which is not algebraic, let K denote the
interval [0, 1] in the real numbers with the usual order. Then Kc = {0}, so K is
not algebraic. The non-algebraic lattice in Figure 3.1(b) is another good example
to keep in mind. (The element z is not compact, and hence in this case not a join
of compact elements.)

Theorem 3.1. (1 ) A closure operator Γ is algebraic if and only if Γ = ΓΣ for
some set Σ of finitary closure rules.

(2 ) Let Γ be an algebraic closure operator on a set X. Then CΓ is an algebraic
lattice whose compact elements are {Γ(F ) : F is a finite subset of X}.
Proof. If Γ is an algebraic closure operator on a set X, then a set S ⊆ X is closed if
and only if Γ(F ) ⊆ S for every finite subset F ⊆ S. Thus the collection of all rules

1If S has no least element, then it is customary to allow the empty set as an ideal; however,

this convention is not universal.
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(a) (b)

x y

z

Figure 3.1

F ⊆ S =⇒ z ∈ S, with F a finite subset of X and z ∈ Γ(F ), determines closure
for Γ.2 Conversely, if Σ is a collection of finitary closure rules, then z ∈ ΓΣ(B) if
and only if z ∈ ΓΣ(F ) for some finite F ⊆ B, making ΓΣ algebraic.

For (2), let us first observe that for any closure operator Γ on X, and for any
collection of subsets Ai of X, we have Γ(

⋃
Ai) =

∨
Γ(Ai) where the join is computed

in the lattice CΓ. The inclusion Γ(
⋃
Ai) ⊇

∨
Γ(Ai) is immediate, while

⋃
Ai ⊆⋃

Γ(Ai) ⊆
∨

Γ(Ai) implies Γ(
⋃
Ai) ⊆ Γ(

∨
Γ(Ai)) =

∨
Γ(Ai).

Now assume that Γ is algebraic. Then, for all B ⊆ X,

Γ(B) =
⋃
{Γ(F ) : F is a finite subset of B}

⊆
∨
{Γ(F ) : F is a finite subset of B}

= Γ(B),

from which equality follows. Thus CΓ will be an algebraic lattice if we can show that
the closures of finite sets are compact.

Let F be a finite subset of X. If Γ(F ) ≤
∨
Ai in CΓ, then

F ⊆
∨
Ai = Γ(

⋃
Ai) =

⋃
{Γ(G) : G finite ⊆

⋃
Ai}.

Consequently each x ∈ F is in some Γ(Gx), where Gx is in turn contained in the
union of finitely many Ai’s. Therefore Γ(F ) ⊆ Γ(

⋃
x∈F Γ(Gx)) ⊆

∨
j∈J Aj for some

finite subset J ⊆ I. We conclude that Γ(F ) is compact in CΓ.
Conversely, let C be compact in CΓ. Since C is closed and Γ is algebraic, C =∨
{Γ(F ) : F finite ⊆ C}. Since C is compact, there exist finitely many finite subsets

2In general there are also valid infinitary closure rules for Γ, but for algebraic closure operators

these are redundant.
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of C, say F1, . . . , Fn, such that C = Γ(F1) ∨ . . . ∨ Γ(Fn) = Γ(F1 ∪ · · · ∪ Fn). Thus
C is the closure of a finite set. �

Thus in a subalgebra lattice Sub A, the compact elements are the finitely gen-
erated subalgebras. In a congruence lattice Con A, the compact elements are the
finitely generated congruences.

It is not true that CΓ being algebraic implies that Γ is algebraic. For example,
let X be the disjoint union of a one element set {b} and an infinite set Y , and let
Γ be the closure operator on X such that Γ(A) = A if A is a proper subset of Y ,
Γ(Y ) = X and Γ(B) = X if b ∈ B.

The following theorem includes a representation of any algebraic lattice as the
lattice of closed sets of an algebraic closure operator.

Theorem 3.2. If S is a join semilattice with 0, then the ideal lattice I(S) is al-
gebraic. The compact elements of I(S) are the principal ideals x/0 with x ∈ S.
Conversely, if L is an algebraic lattice, then Lc is a join semilattice with 0, and
L ∼= I(Lc).

Proof. Let S be a join semilattice with 0. I is an algebraic closure operator, so I(S)
is an algebraic lattice. If F ⊆ S is finite, then I(F ) = (

∨
F )/0, so compact ideals

are principal.
Now let L be an algebraic lattice. There are two natural maps: f : L → I(Lc)

by f(x) = x/0 ∩ Lc, and g : I(Lc) → L by g(J) =
∨
J . Both maps are clearly

order preserving, and they are mutually inverse: fg(J) = (
∨
J)/0 ∩ Lc = J by

the definition of compactness, and gf(x) =
∨

(x/0 ∩ Lc) = x by the definition of
algebraic. Hence they are both isomorphisms, and L ∼= I(Lc). �

Let us digress for a moment into universal algebra. A classic result of Birkhoff
and Frink gives a concrete representation of algebraic closure operators [2].

Theorem 3.3. Let Γ be an algebraic closure operator on a set X. Then there is an
algebra A on the set X such that the subalgebras of A are precisely the closed sets
of Γ.

Corollary. Every algebraic lattice is isomorphic to the lattice of all subalgebras of
an algebra.

Proof. An algebra in general is described by A = 〈A;F,C〉 where A is a set, F =
{fi : i ∈ I} a collection of operations on A (so fi : Ani → A), and C is a set of
constants in A. Appendix 3 reviews the basic definitions of universal algebra.

The carrier set for our algebra must of course be X. For each nonempty finite
set F ⊆ X and element x ∈ Γ(F ), we have an operation fF,x : X |F | → X given by

fF,x(a1, . . . , an) =
{
x if {a1, . . . , an} = F

a1 otherwise.
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Our constants are C = Γ(∅), the elements of the least closed set (which may be
empty).

Note that since Γ is algebraic, a set B ⊆ X is closed if and only if Γ(F ) ⊆ B for
every finite F ⊆ B. Using this, it is very easy to check that the subalgebras of A
are precisely the closed sets of CΓ. �

However, the algebra constructed in the proof of Theorem 3.3 will have |X|
operations when X is infinite. Having lots of operations is not necessarily a bad
thing: vector spaces are respectable algebras, and a vector space over a field F has
basic operations fr : V → V where fr(v) = rv for every r ∈ F . Nonetheless, we
like algebras to have few operations, like groups and lattices. A theorem due to Bill
Hanf tells us when we can get by with a small number of operations.3

Theorem 3.4. For any nontrivial algebraic lattice L the following conditions are
equivalent.

(1) Each compact element of L contains only countably many compact elements.
(2) There exists an algebra A with only countably many operations and constants

such that L is isomorphic to the subalgebra lattice of A.
(3) There exists an algebra B with one binary operation (and no constants) such

that L is isomorphic to the subalgebra lattice of B.

Proof. Of course (3) implies (2).
In general, if an algebra A has κ basic operations, λ constants and γ generators,

then it is a homomorphic image of the absolutely free algebra W (X) generated by
a set X with |X| = γ and the same κ operation symbols and λ constants. It is easy
to count that |W (X)| = max(γ, κ, λ,ℵ0), and |A| ≤ |W (X)|.

In particular then, if C is compact (i.e., finitely generated) in Sub A, and A has
only countably many basic operations and constants, then |C| ≤ ℵ0. Therefore C has
only countably many finite subsets, and so there are only countably many finitely
generated subalgebras D contained in C. Thus (2) implies (1).

To show (1) implies (3), let L be a nontrivial algebraic lattice such that for each
x ∈ Lc, |x/0∩Lc| ≤ ℵ0. We will construct an algebra B whose universe is Lc−{0},
with one binary operation ∗, whose subalgebras are precisely the ideals of Lc with
0 removed. This makes Sub B ∼= I(Lc) ∼= L, as desired.

For each c ∈ Lc −{0}, we make a sequence 〈ci〉i∈ω as follows. If 2 ≤ |c/0∩Lc| =
n + 1 < ∞, arrange c/0 ∩ Lc − {0} into a cyclically repeating sequence: ci = cj iff
i ≡ j mod n. If c/0 ∩ Lc is infinite (and hence countable), arrange c/0 ∩ Lc − {0}
into a non-repeating sequence 〈ci〉. In both cases start the sequence with c0 = c.

Define the binary operation ∗ for c, d ∈ Lc − {0} by

c ∗ d = c ∨ d if c and d are incomparable,
c ∗ d = d ∗ c = ci+1 if d = ci ≤ c.

3This result is unpublished but well known.
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You can now check that ∗ is well defined, and that the algebra B = 〈Lc; ∗〉 has
exactly the sets of nonzero elements of ideals of Lc as subalgebras. �

The situation with respect to congruence lattices is considerably more compli-
cated. Nonetheless, the basic facts are the same: George Grätzer and E. T. Schmidt
proved that every algebraic lattice is isomorphic to the congruence lattice of some
algebra [6], and Bill Lampe showed that uncountably many operations may be re-
quired [5].

Ralph Freese and Walter Taylor modified Lampe’s original example to obtain a
very natural one. Let V be a vector space of countably infinite dimension over a
field F with |F | = κ > ℵ0. Let L be the congruence lattice Con V, which for vector
spaces is isomorphic to the subspace lattice Sub V (since homomorphisms on vector
spaces are linear transformations, and any subspace of V is the kernel of a linear
transformation). The representation we have just given for L involves κ operations
fr (r ∈ F ). In fact, one can show that any algebra A with Con A ∼= L must have
at least κ operations.

We now turn our attention to the structure of algebraic lattices. The lattice L is
said to be weakly atomic if whenever a > b in L, there exist elements u, v ∈ L such
that a ≥ u � v ≥ b.
Theorem 3.5. Every algebraic lattice is weakly atomic.

Proof. Let a > b in an algebraic lattice L. Then there is a compact element c ∈ Lc
with c ≤ a and c 6≤ b. Let P = {x ∈ a/b : c 6≤ x}. Note b ∈ P , and since c is
compact the join of a chain in P is again in P. Hence by Zorn’s Lemma, P contains
a maximal element v, and the element u = c ∨ v covers v. Thus b ≤ v ≺ u ≤ a. �

A lattice L is said to be upper continuous if L is complete and, for every element
a ∈ L and every chain C in L, a ∧

∨
C =

∨
c∈C a ∧ c.

Theorem 3.6. Every algebraic lattice is upper continuous.

Proof. Let L be algebraic and C a chain in L. Of course
∨
c∈C(a ∧ c) ≤ a ∧

∨
C.

Let r = a ∧
∨
C. For each d ∈ r/0 ∩ Lc, we have d ≤ a and d ≤

∨
C. The

compactness of d implies d ≤ cd for some cd ∈ C, and hence d ≤ a ∧ cd. But then
r =

∨
(r/0 ∩ Lc) ≤

∨
c∈C a ∧ c, as desired. �

Two alternative forms of join continuity are often useful. An ordered set P is
said to be up-directed if for every x, y ∈ P there exists z ∈ P with x ≤ z and y ≤ z.
So, for example, any join semilattice is up-directed.

Theorem 3.7. For a complete lattice L, the following are equivalent.
(1) L is upper continuous.
(2) For every a ∈ L and up-directed set D ⊆ L, a ∧

∨
D =

∨
d∈D a ∧ d.

(3) For every a ∈ L and S ⊆ L,

a ∧
∨
S =

∨
F finite ⊆S

(a ∧
∨
F ).
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Proof. It is straightforward that (3) implies (2) implies (1); we will show that (1)
implies (3) by induction on |S|. Property (3) is trivial if |S| is finite, so assume it is
infinite, and let λ be the least ordinal with |S| = |λ|. Arrange the elements of S into
a sequence 〈xξ : ξ < λ〉. Put Sξ = {xν : ν < ξ}. Then |Sξ| < |S| for each ξ < λ, and
the elements of the form

∨
Sξ are a chain in L. Thus, using (1), we can calculate

a ∧
∨
S = a ∧

∨
ξ<λ

∨
Sξ

=
∨
ξ<λ

(a ∧
∨
Sξ)

=
∨
ξ<λ

(
∨

F finite ⊆Sξ

(a ∧
∨
F ))

=
∨

F finite ⊆S
(a ∧

∨
F ),

as desired. �

An element a ∈ L is called an atom if a � 0, and a coatom if 1 � a. Theorem 3.7
shows that every atom in an upper continuous lattice is compact. More generally,
if a/0 satisfies the ACC in an upper continuous lattice, then a is compact.

We know that every element x in an algebraic lattice can be expressed as the
join of x/0 ∩ Lc (by definition). It turns out to be at least as important to know
how x can be expressed as a meet of other elements. We say that an element q in a
complete lattice L is completely meet irreducible if, for every subset S of L, q =

∧
S

implies q ∈ S. These are of course the elements which cannot be expressed as the
proper meet of other elements. Let M∗(L) denote the set of all completely meet
irreducible elements of L. Note that 1 6∈M∗(L) (since

∧
∅ = 1 and 1 6∈ ∅).

Theorem 3.8. Let q ∈ L where L is a complete lattice. The following are equiva-
lent.

(1) q ∈M∗(L).
(2)

∧
{x ∈ L : x > q} > q.

(3) There exists q∗ ∈ L such that q∗ � q and for all x ∈ L, x > q implies x ≥ q∗.

The connection between (2) and (3) is of course q∗ =
∧
{x ∈ L : x > q}. In a

finite lattice, q ∈ M∗(L) iff there is a unique element q∗ covering q, but in general
we need the stronger property (3).

A decomposition of an element a ∈ L is a representation a =
∧
Q where Q is

a set of completely meet irreducible elements of L. An element in an arbitrary
lattice may have any number of decompositions, including none. A theorem due
to Garrett Birkhoff says that every element in an algebraic lattice has at least one
decomposition [1].
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Theorem 3.9. If L is an algebraic lattice, then M∗(L) is meet dense in L. Thus
for every x ∈ L, x =

∧
(1/x ∩M∗(L)).

Proof. Let m =
∧

(1/x ∩M∗(L)), and suppose x < m. Then there exists a c ∈ Lc
with c ≤ m and c 6≤ x. Since c is compact, we can use Zorn’s Lemma to find
an element q which is maximal with respect to q ≥ x, q 6≥ c. For any y ∈ L,
y > q implies y ≥ q ∨ c, so q is completely meet irreducible with q∗ = q ∨ c. Then
q ∈ 1/x ∩M∗(L) implies q ≥ m ≥ c, a contradiction. Hence x = m. �

It is rare for an element in an algebraic lattice to have a unique decomposition. A
somewhat weaker property is for an element to have an irredundant decomposition,
meaning a =

∧
Q but a <

∧
(Q− {q}) for all q ∈ Q, where Q is a set of completely

meet irreducible elements. An element in an algebraic lattice need not have an
irredundant decomposition either. Let L be the lattice consisting of the empty
set and all cofinite subsets of an infinite set X, ordered by set inclusion. This
satisfies the ACC so it is algebraic. The completely meet irreducible elements of
L are its coatoms, the complements of one element subsets of X. The meet of
any infinite collection of coatoms is 0 (the empty set), but no such decomposition
is irredundant. Clearly also these are the only decompositions of 0, so 0 has no
irredundant decomposition.

A lattice is strongly atomic if a > b in L implies there exists u ∈ L such that a ≥
u � b. A beautiful result of Peter Crawley guarantees the existence of irredundant
decompositions in strongly atomic algebraic lattices [3].

Theorem 3.10. If an algebraic lattice L is strongly atomic, then every element of
L has an irredundant decomposition.

If L is also distributive, we obtain the uniqueness of irredundant decompositions.

Theorem 3.11. If L is a distributive, strongly atomic, algebraic lattice, then every
element of L has a unique irredundant decomposition.

The finite case of Theorem 3.11 is the dual of Theorem 8.6(c), which we will
prove later.

The theory of decompositions was studied extensively by Dilworth and Crawley,
and their book [4] contains most of the principal results.

Exercises for Chapter 3

1. Prove that an upper continuous distributive lattice satisfies the infinite dis-
tributive law a ∧ (

∨
i∈I bi) =

∨
i∈I(a ∧ bi).

2. Describe the complete sublattices of the real numbers < which are algebraic.
3. Show that the natural map from a lattice to its ideal lattice, ϕ : L → I(L) by

ϕ(x) = x/0, is a lattice embedding. Show that (I(L), ϕ) is a join dense completion
of L, and that it may differ from the MacNeille completion.

33



4. Recall that a filter is a dual ideal. The filter lattice F(L) of a lattice L is
ordered by reverse set inclusion: F ≤ G iff F ⊇ G. Prove that L is naturally
embedded in F(L), and that F(L) is dually compactly generated.

5. Prove that every element of a complete lattice L is compact if and only if L
satisfies the ACC. (Cf. Exercise 2.2.)

6. A subset S of a complete lattice L is a complete sublattice if
∨
A ∈ S and∧

A ∈ S for every nonempty subset A ⊆ S. Prove that a complete sublattice of an
algebraic lattice is algebraic.

7. (a) Represent the lattices M3 and N5 as Sub A for a finite algebra A.
(b) Show that M3

∼= Sub G for a (finite) group G, but that N5 cannot be so
represented.

8. A closure rule is unary if it is of the form x ∈ C =⇒ y ∈ C. Prove that if Σ is
a collection of unary closure rules, then unions of closed sets are closed, and hence
the lattice of closed sets CΣ is distributive. Conclude that the subalgebra lattice of
an algebra with only unary operations is distributive.

9. Let L be a complete lattice, J a join dense subset of L and M a meet dense
subset of L. Define maps σ : P(J)→ P(M) and π : P(M)→ P(J) by

σ(X) = Xu ∩M
π(Y ) = Y ` ∩ J.

By Exercise 2.13, with R the restriction of ≤ to J ×M , πσ is a closure operator on
J and σπ is a closure operator on M . Prove that Cπσ ∼= L and that Cσπ is dually
isomorphic to L.

10. A lattice is semimodular if a � a ∧ b implies a ∨ b � b. Prove that if every
element of a finite lattice L has a unique irredundant decomposition, then L is
semimodular. (Morgan Ward)

11. A decomposition a =
∧
Q is strongly irredundant if a < q∗ ∧

∧
(Q − {q})

for all q ∈ Q. Prove that every irredundant decomposition in a strongly atomic
semimodular lattice is strongly irredundant. (Keith Kearnes)

12. Let L be the lattice of ideals of the ring of integers Z. Find M∗(L) and all
decompositions of 0.
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4. Representation by Equivalence Relations

No taxation without representation!

So far we have no analogue for lattices of the Cayley theorem for groups, that
every group is isomorphic to a group of permutations. The corresponding represen-
tation theorem for lattices, that every lattice is isomorphic to a lattice of equivalence
relations, turns out to be considerably deeper. Its proof uses a recursive construction
technique which has become a standard tool of lattice theory and universal algebra.

An equivalence relation on a set X is a binary relation E satisfying, for all x, y, z ∈
X,

(1) x E x,
(2) x E y implies y E x,
(3) if x E y and y E z, then x E z.

We think of an equivalence relation as partitioning the set X into blocks of E-related
elements, called equivalence classes. Conversely, any partition of X into a disjoint
union of blocks induces an equivalence relation on X: x E y iff x and y are in the
same block. As usual with relations, we write x E y and (x, y) ∈ E interchangeably.

The most important equivalence relations are those induced by maps. If Y is
another set, and f : X → Y is any function, then

ker f = {(x, y) ∈ X2 : f(x) = f(y)}

is an equivalence relation, called the kernel of f . If X and Y are algebras and
f : X → Y is a homomorphism, then ker f is a congruence relation.

Thinking of binary relations as subsets of X2, the axioms (1)–(3) for an equiv-
alence relation are finitary closure rules. Thus the collection of all equivalence
relations on X forms an algebraic lattice Eq X, with the order given by R ≤ S iff
(x, y) ∈ R =⇒ (x, y) ∈ S iff R ⊆ S in P(X2). The greatest element of Eq X is
the universal relation X2, and its least element is the equality relation =. The meet
operation in Eq X is of course set intersection, which means that (x, y) ∈

∧
i∈I Ei

if and only if x Ei y for all i ∈ I. The join
∨
i∈I Ei is the transitive closure of the

set union
⋃
i∈I Ei. Thus (x, y) ∈

∨
Ei if and only if there exists a finite sequence of

elements xj and indices ij such that

x = x0 Ei1 x1 Ei2 x2 . . . xk−1 Eik xk = y.
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The lattice Eq X has many nice properties: it is algebraic, strongly atomic, semi-
modular, relatively complemented and simple.1 The proofs of these facts are exer-
cises in this chapter and Chapter 11.

If R and S are relations on X, define the relative product R ◦ S to be the set of
all pairs (x, y) ∈ X2 for which there exists a z ∈ X with x R z S y. If R and S are
equivalence relations, then because x R x we have S ⊆ R ◦ S; similarly R ⊆ R ◦ S.
Thus

R ◦ S ⊆ R ◦ S ◦R ⊆ R ◦ S ◦R ◦ S ⊆ · · ·
and it is not hard to see that R∨S is the union of this chain. It is possible, however,
that R∨S is in fact equal to some term in the chain; for example, this is always the
case when X is finite. Our proof will yield a representation in which this is always
the case, for any two equivalence relations which represent elements of the given
lattice.

To be precise, a representation of a lattice L is an ordered pair (X,F ) where X
is a set and F : L → Eq X is a lattice embedding. We say that the representation
is

(1) of type 1 if F (x) ∨ F (y) = F (x) ◦ F (y) for all x, y ∈ L,
(2) of type 2 if F (x) ∨ F (y) = F (x) ◦ F (y) ◦ F (x) for all x, y ∈ L,
(3) of type 3 if F (x) ∨ F (y) = F (x) ◦ F (y) ◦ F (x) ◦ F (y) for all x, y ∈ L.

P. M. Whitman [7] proved in 1946 that every lattice has a representation. In 1953
Bjarni Jónsson [4] found a simpler proof which gives a slightly stronger result.

Theorem 4.1. Every lattice has a type 3 representation.

Proof. Given a lattice L, we will use transfinite recursion to construct a type 3
representation of L.

A weak representation of L is a pair (U,F ) where U is a set and F : L → Eq U
is a one-to-one meet homomorphism. Let us order the weak representations of L by

(U,F ) v (V,G) if U ⊆ V and G(x) ∩ U2 = F (x) for all x ∈ L.
We want to construct a (transfinite) sequence (Uξ, Fξ)ξ<λ of weak representations
of L, with (Uα, Fα) v (Uβ , Fβ) whenever α ≤ β, whose limit (union) will be a lattice
embedding of L into Eq

⋃
ξ<λ Uξ. We can begin our construction by letting (U0, F0)

be the weak representation with U0 = L and (y, z) ∈ F0(x) iff y = z or y ∨ z ≤ x.
The crucial step is where we fix up the joins one at a time.

Sublemma 1. If (U,F ) is a weak representation of L and (p, q) ∈ F (x ∨ y), then
there exists (V,G) w (U,F ) with (p, q) ∈ G(x) ◦G(y) ◦G(x) ◦G(y).

Proof of Sublemma 1. Form V by adding three new points to U , say V = U ∪̇ {r, s, t},
as in Figure 4.1. We want to make

p G(x) r G(y) s G(x) t G(y) q.
1The terms relatively complemented and simple are defined in Chapter 10; we include them

here for the sake of completeness.
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Accordingly, for z ∈ L we define G(z) to be the reflexive, symmetric relation on U
satisfying, for u, v ∈ U ,

(1) u G(z) v iff u F (z) v,
(2) u G(z) r iff z ≥ x and u F (z) p,
(3) u G(z) s iff z ≥ x ∨ y and u F (z) p,
(4) u G(z) t iff z ≥ y and u F (z) q,
(5) r G(z) s iff z ≥ y,
(6) s G(z) t iff z ≥ x,
(7) r G(z) t iff z ≥ x ∨ y.

You must check that each G(z) defined thusly really is an equivalence relation, i.e.,
that it is transitive. This is routine but a bit tedious to write down, so we leave
it to the reader. There are four cases, depending on whether or not z ≥ x and on
whether or not z ≥ y. Straightforward though it is, this verification would not work
if we had only added one or two new elements between p and q; see Theorems 4.5
and 4.6.

p q

r

s

t

G(x) G(y)

G(y) G(x)

F (x ∨ y)

U

Figure 4.1

Now (1) says that G(z) ∩ U2 = F (z). Since F is one-to-one, this implies G
is also. Note that for z, z′ ∈ L we have z ∧ z′ ≥ x iff z ≥ x and z′ ≥ x, and
symmetrically for y. Using this with conditions (1)–(7), it is not hard to check that
G(z ∧ z′) = G(z) ∩ G(z′). Hence, G is a weak representation of L, and clearly
(U,F ) v (V,G). �
Sublemma 2. Let λ be a limit ordinal, and for ξ < λ let (Uξ , Fξ) be weak repre-
sentations of L such that α < β < λ implies (Uα, Fα) v (Uβ , Fβ). Let V =

⋃
ξ<λ Uξ

and G(x) =
⋃
ξ<λ Fξ(x) for all x ∈ L. Then (V,G) is a weak representation of L

with (Uξ , Fξ) v (V,G) for each ξ < λ.
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Proof. Let ξ < λ. Since Fα(x) = Fξ(x) ∩ U2
α ⊆ Fξ(x) whenever α < ξ and Fξ(x) =

Fβ(x) ∩ U2
ξ whenever β ≥ ξ, for all x ∈ L we have

G(x) ∩ U2
ξ =

( ⋃
γ<λ

Fγ(x)
)
∩ U2

ξ

=
⋃
γ<λ

(Fγ(x) ∩ U2
ξ )

= Fξ(x).

Thus (Uξ , Fξ) v (V,G). Since F0 is one-to-one, this implies that G is also.
It remains to show that G is a meet homomorphism. Clearly G preserves order,

so for any x, y ∈ L we have G(x ∧ y) ⊆ G(x) ∩ G(y). On the other hand, if
(u, v) ∈ G(x) ∩ G(y), then there exists α < λ such that (u, v) ∈ Fα(x), and there
exists β < λ such that (u, v) ∈ Fβ(y). If γ is the larger of α and β, then (u, v) ∈
Fγ(x) ∩ Fγ(y) = Fγ(x ∧ y) ⊆ G(x ∧ y). Thus G(x) ∩G(y) ⊆ G(x ∧ y). Combining
the two inclusions gives equality. �

Now we want to use these two sublemmas to construct a type 3 representation of
L, i.e., a weak representation which also satisfies G(x∨y) = G(x)◦G(y)◦G(x)◦G(y).

Start with an arbitrary weak representation (U0, F0), and consider the set of all
quadruples (p, q, x, y) such that p, q ∈ U0 and x, y ∈ L and (p, q) ∈ F0(x ∨ y).
Arrange these into a well ordered sequence (pξ, qξ, xξ, yξ) for ξ < η. Applying the
sublemmas repeatedly, we can obtain a sequence of weak representations (Uξ, Fξ)
for ξ ≤ η such that

(1) if ξ < η, then (Uξ , Fξ) v (Uξ+1, Fξ+1) and (pξ, qξ) ∈ Fξ+1(xξ) ◦ Fξ+1(yξ) ◦
Fξ+1(xξ) ◦ Fξ+1(yξ);

(2) if λ ≤ η is a limit ordinal, then Uλ =
⋃
ξ<λ Uξ and Fλ(x) =

⋃
ξ<λ Fξ(x) for

all x ∈ L.
Let V1 = Uη and G1 = Fη. If p, q ∈ U0, and x, y ∈ L and p F0(x ∨ y) q, then
(p, q, x, y) = (pξ, qξ, xξ, yξ) for some ξ < η, so that (p, q) ∈ Fξ+1(x) ◦ Fξ+1(y) ◦
Fξ+1(x) ◦ Fξ+1(y). Consequently,

F0(x ∨ y) ⊆ G1(x) ◦G1(y) ◦G1(x) ◦G1(y).

Note (U0, F0) v (V1, G1).
Of course, along the way we have probably introduced lots of new failures of the

join property which need to be fixed up. So repeat this whole process ω times,
obtaining a sequence

(U0, F0) = (V0, G0) v (V1, G1) v (V2, G2) v · · ·

such that Gn(x∨y) ⊆ Gn+1(x)◦Gn+1(y)◦Gn+1(x)◦Gn+1(y) for all n ∈ w, x, y ∈ L.
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Finally, let W =
⋃
n∈w Vn and H(x) =

⋃
n∈ω Gn(x) for all x ∈ L, and you get a

type 3 representation of L. �
Since the proof involves transfinite recursion, it produces a representation (X,F )

with X infinite, even when L is finite. For a long time one of the outstanding
questions of lattice theory was whether every finite lattice can be embedded into
the lattice of equivalence relations on a finite set. In 1980, Pavel Pudlák and J́ı̌ri
Tůma showed that the answer is yes [6]. The proof is quite difficult.

Theorem 4.2. Every finite lattice has a representation (Y,G) with Y finite.

One of the motivations for Whitman’s theorem was Garrett Birkhoff’s observa-
tion, made in the 1930’s, that a representation of a lattice L by equivalence relations
induces an embedding of L into the lattice of subgroups of a group. Given a rep-
resentation (X,F ) of L, let G be the group of all permutations on X which move
only finitely many elements, and let Sub G denote the lattice of subgroups of G.
Let h : L → Sub G by

h(a) = {π ∈ G : x F (a) π(x) for all x ∈ X}.

Then it is not too hard to check that h is an embedding.

Theorem 4.3. Every lattice can be embedded into the lattice of subgroups of a
group.

Not all lattices have representations of type 1 or 2, so it is natural to ask which
ones do. First we consider sublattices of Eq X with type 2 joins.

Lemma 4.4. Let L be a sublattice of Eq X with the property that R∨S = R◦S ◦R
for all R, S ∈ L. Then L satisfies

(M) x ≥ y implies x ∧ (y ∨ z) = y ∨ (x ∧ z).

The implication (M) is known as the modular law.

Proof. Assume that L is a sublattice of Eq X with type 2 joins, and let A,B,C ∈ L
with A ≥ B. If p, q ∈ X and (p, q) ∈ A ∧ (B ∨ C), then

p A q

p B r C s B q

for some r, s ∈ X (see Figure 4.2). Since

r B p A q B s

and B ≤ A, we have (r, s) ∈ A ∧ C. It follows that (p, q) ∈ B ∨ (A ∧ C). Thus
A∧ (B ∨C) ≤ B ∨ (A∧C). The reverse inclusion is trivial, so we have equality. �
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p q

sr

BB

A

C

Figure 4.2

On the other hand, Jónsson gave a slight variation of the proof of Theorem
4.1 which shows that every modular lattice has a type 2 representation [4], [1].
Combining this with Lemma 4.4, we obtain the following.

Theorem 4.5. A lattice has a type 2 representation if and only if it is modular.

The modular law (M) plays an important role in lattice theory, and we will see
it often. Note that (M) fails in the pentagon N5. It was invented in the 1890’s by
Richard Dedekind, who showed that the lattice of normal subgroups of a group is
modular. The modular law is equivalent to the equation,

(M ′) x ∧ ((x ∧ y) ∨ z) = (x ∧ y) ∨ (x ∧ z).

It is easily seen to be a special case of (and hence weaker than) the distributive law,

(D) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

viz., (M) says that (D) should hold for x ≥ y.
Note that the normal subgroup lattice of a group has a natural representation

(X,F ): take X = G and F (N) = {(x, y) ∈ G2 : xy−1 ∈ N}. This representation is
in fact type 1 (Exercise 3), and Jónsson showed that lattices with a type 1 repre-
sentation, or equivalently sublattices of Eq X in which R ∨ S = R ◦ S, satisfy an
implication stronger than the modular law. A lattice is said to be Arguesian if it
satisfies

(A) (a0 ∨ b0) ∧ (a1 ∨ b1) ≤ a2 ∨ b2 implies c2 ≤ c0 ∨ c1

where
ci = (aj ∨ ak) ∧ (bj ∨ bk)

for {i, j, k} = {0, 1, 2}. The Arguesian law is (less obviously) equivalent to a lattice
inclusion,

(A′) (a0 ∨ b0) ∧ (a1 ∨ b1) ∧ (a2 ∨ b2) ≤ a0 ∨ (b0 ∧ (c ∨ b1))
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where
c = c2 ∧ (c0 ∨ c1).

These are two of several equivalent forms of this law, which is stronger than modular-
ity and weaker than distributivity. It is modelled after Desargues’ Law in projective
geometry.

Theorem 4.6. If L is a sublattice of Eq X with the property that R ∨ S = R ◦ S
for all R, S ∈ L, then L satisfies the Arguesian law.

Corollary. Every lattice which has a type 1 representation is Arguesian.

Proof. Let L be a sublattice of Eq X with type 1 joins. Assume (A0 ∨B0) ∧ (A1 ∨
B1) ≤ A2 ∨B2, and suppose (p, q) ∈ C2 = (A0 ∨A1) ∧ (B0 ∨B1). Then there exist
r, s such that

p A0 r A1 q

p B0 s B1 q.

Since (r, s) ∈ (A0 ∨B0)∧ (A1 ∨B1) ≤ A2 ∨B2, there exists t such that r A2 t B2 s.
Now you can check that

(p, t) ∈ (A0 ∨A2) ∧ (B0 ∨B2) = C1

(t, q) ∈ (A1 ∨A2) ∧ (B1 ∨B2) = C0

and hence (p, q) ∈ C0 ∨ C1. Thus C2 ≤ C0 ∨ C1, as desired. (This argument is
diagrammed in Figure 4.3.) �

r

s

A2

B2

t qp

A0 A1

B0 B1

C1 C0

Figure 4.3
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Mark Haiman has shown that the converse is false: there are Arguesian lattices
which do not have a type 1 representation [2], [3]. In fact, his proof shows that lat-
tices with a type 1 representation must satisfy equations which are strictly stronger
than the Arguesian law. It follows, in particular, that the lattice of normal sub-
groups of a group also satisfies these stronger equations. Interestingly, P. P. Pálfy
and Laszlo Szabó have shown that subgroup lattices of abelian groups satisfy an
equation which does not hold in all normal subgroup lattices [5].

The question remains: Does there exist a set of equations Σ such that a lattice
has a type 1 representation if and only if it satisfies all the equations of Σ? Haiman
proved that if such a Σ exists, it must contain infinitely many equations. In Chapter
7 we will see that a class of lattices is characterized by a set of equations if and only
if it is closed with respect to direct products, sublattices, and homomorphic images.
The class of lattices having a type 1 representation is easily seen to be closed under
sublattices and direct products, so the question is equivalent to: Is the class of all
lattices having a type 1 representation closed under homomorphic images?

Exercises for Chapter 4

1. Draw Eq X for |X| = 3, 4.
2. Find representations in Eq X for

(a) P(Y ), Y a set,
(b) N5,
(c) Mn, n <∞.

3. Let G be a group. Let F : Sub G → Eq G be the standard representation by
cosets: F (H) = {(x, y) ∈ G2 : xy−1 ∈ H}.

(a) Verify that F (H) is indeed an equivalence relation.
(b) Verify that F is a lattice embedding.
(c) Show that F (H) ∨ F (K) = F (H) ◦ F (K) iff HK = KH (= H ∨K).
(d) Conclude that the restriction of F to the normal subgroup lattice N (G) is a

type 1 representation.

4. Show that for R,S ∈ Eq X, R∨S = R ◦S iff S ◦R ⊆ R ◦ S iff R ◦ S = S ◦R.
(For this reason, such equivalence relations are said to permute.)

5. Recall from Exercise 6 of Chapter 3 that a complete sublattice of an algebraic
lattice is algebraic.

(a) Let S be a join semilattice with 0. Assume that ϕ : S → Eq X is a join
homomorphism with the properties

(i) for each pair a, b ∈ X there exists σ(a, b) ∈ S such that (a, b) ∈ ϕ(s) iff
s ≥ σ(a, b), and

(ii) for each s ∈ S, there exists a pair (xs, ys) such that (xs, ys) ∈ ϕ(t) iff s ≤ t.
Show that ϕ induces a complete representation ϕ : I(S)→ Eq X.

(b) Indicate how to modify the proof of Theorem 4.1 to obtain, for an arbitrary
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join semilattice S with 0, a set X and a join homomorphism ϕ : S → Eq X
satisfying (i) and (ii).

(c) Conclude that a complete lattice L has a complete representation by equiva-
lence relations if and only if L is algebraic.

6. Prove that Eq X is a strongly atomic, semimodular, algebraic lattice.
7. Prove that a lattice with a type 1 representation satisfies the Arguesian inclu-

sion (A′).
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5. Congruence Relations

“You’re young, Myrtle Mae. You’ve got a lot to learn, and I hope you never
learn it.”

– Vita in “Harvey”

You are doubtless familiar with the connection between homomorphisms and
normal subgroups of groups. In this chapter we will establish the corresponding ideas
for lattices (and other general algebras). Borrowing notation from group theory, if X
is a set and θ an equivalence relation on X, for x ∈ X let xθ denote the equivalence
class {y ∈ X : x θ y}, and let

X/θ = {xθ : x ∈ X}.

Thus the elements of X/θ are the equivalence classes of θ.
Recall that if L and K are lattices and h : L → K is a homomorphism, then the

kernel of h is the induced equivalence relation,

ker h = {(x, y) ∈ L2 : h(x) = h(y)}.

We can define lattice operations naturally on the equivalence classes of ker h, viz.,
if θ = kerh, then

(§)
xθ ∨ yθ = (x ∨ y)θ

xθ ∧ yθ = (x ∧ y)θ.

The homomorphism property shows that these operations are well defined, for if
(x, y) ∈ ker h and (r, s) ∈ kerh, then h(x∨ r) = h(x)∨h(r) = h(y)∨h(s) = h(y∨s),
whence (x ∨ r, y ∨ s) ∈ kerh. Moreover, L/ ker h with these operations forms an
algebra L/ ker h isomorphic to the image h(L), which is a sublattice of K. Thus
L/ ker h is also a lattice.

Theorem 5.1. First Isomorphism Theorem. Let L and K be lattices, and let
h : L → K be a lattice homomorphism. Then L/ ker h with the operations defined by
(§) is a lattice L/ ker h, which is isomorphic to the image h(L) of L in K.

Let us define a congruence relation on a lattice L to be an equivalence relation θ
such that θ = kerh for some homomorphism h.1 We have see that, in addition to

1This is not the standard definition, but we are about to show it is equivalent to it.
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being equivalence relations, congruence relations must preserve the operations of L:
if θ is a congruence relation, then

(†) x θ y and r θ s implies x ∨ r θ y ∨ s,

and analogously for meets. Note that (†) is equivalent for an equivalence relation θ
to the apparently weaker, and easier to check, condition

(†′) x θ y implies x ∨ z θ y ∨ z.

For (†) implies (†′) because every equivalence relation is reflexive, while if θ has
the property (†′) and the hypotheses of (†) hold, then applying (†) twice yields
x ∨ r θ y ∨ r θ y ∨ s.

We want to show that, conversely, any equivalence relation satisfying (†′) and the
corresponding implication for meets is a congruence relation.

Theorem 5.2. Let L be a lattice, and let θ be an equivalence relation on L satisfying

(‡)
x θ y implies x ∨ z θ y ∨ z,
x θ y implies x ∧ z θ y ∧ z.

Define join and meet on L/θ by the formulas (§). Then L/θ = (L/θ,∧,∨) is a lattice,
and the map h : L → L/θ defined by h(x) = xθ is a surjective homomorphism with
ker h = θ.

Proof. The conditions (‡) ensure that the join and meet operations are well defined
on L/θ. By definition, we have

h(x ∨ y) = (x ∨ y)θ = xθ ∨ yθ = h(x) ∨ h(y)

and similarly for meets, so h is a homomorphism. The range of h is clearly L/θ.
It remains to show that L/θ satisfies the equations defining lattices. This follows

from the general principle that homomorphisms preserve the satisfaction of equa-
tions, i.e., if h : L� K is a surjective homomorphism and an equation p = q holds
in L, then it holds in K. (See Exercise 4.) For example, to check commutativity of
meets, let a, b ∈ K. Then there exist x, y ∈ L such that h(x) = a and h(y) = b.
Hence

a ∧ b = h(x) ∧ h(y) = h(x ∧ y)

= h(y ∧ x) = h(y) ∧ h(x) = b ∧ a.

Similar arguments allow us to verify the commutativity of joins, the idempotence
and associativity of both operations, and the absorption laws. Thus a homomorphic
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image of a lattice is a lattice.2 As h : L → L/θ is a surjective homomorphism, we
conclude that L/θ is a lattice, which completes the proof. �

Thus congruence relations are precisely equivalence relations which satisfy (‡).
But the conditions of (‡) and the axioms for an equivalence relation are all finitary
closure rules on L2. Hence, by Theorem 3.1, the set of congruence relations on a
lattice L forms an algebraic lattice Con L. The corresponding closure operator on
L2 is denoted by “con”. So for a set Q of ordered pairs, con Q is the congruence
relation generated by Q; for a single pair, Q = {(a, b)}, we write just con(a, b).

Moreover, the equivalence relation join (the transitive closure of the union) of a set
of congruence relations again satisfies (‡). For if θi (i ∈ I) are congruence relations
and x θi1 r1 θi2 r2 . . . θin y, then x ∨ z θi1 r1 ∨ z θi2 r2 ∨ z . . . θin y ∨ z, and likewise
for meets. Thus the transitive closure of

⋃
i∈I θi is a congruence relation, and so it

is the join
∨
i∈I θi in Con L. Since the meet is also the same (set intersection) in

both lattices, Con L is a complete sublattice of Eq L.

Theorem 5.3. Con L is an algebraic lattice. A congruence relation θ is compact
in Con L if and only if it is finitely generated, i.e., there exist finitely many pairs
(a1, b1), . . . , (ak, bk) of elements of L such that θ =

∨
1≤i≤k con(ai, bi).

Note that the universal relation and the equality relation on L2 are both con-
gruence relations; they are the greatest and least elements of Con L, respectively.
Also, since x θ y if and only if x ∧ y θ x∨ y, a congruence relation is determined by
the ordered pairs (a, b) with a < b which it contains.

A congruence relation θ is principal if θ = con(a, b) for some pair a, b ∈ L. The
principal congruence relations are join dense in Con L: for any congruence relation
θ, we have

θ =
∨
{con(a, b) : a θ b}.

It follows from the general theory of algebraic closure operators that principal
congruence relations are compact, but this can be shown directly as follows: if
con(a, b) ≤

∨
i∈I θi, then there exist elements c1, . . . , cm and indices i0, . . . , im such

that
a θi0 c1 θi1 c2 . . . θim b ,

whence (a, b) ∈ θi0 ∨ . . . ∨ θim and thus con(a, b) ≤
∨

0≤j≤m θij .
One of the most basic facts about congruences says that congruences of L/θ

correspond to congruences on L containing θ.

Theorem 5.4. Second Isomorphism Theorem. If θ ∈ Con L, then Con (L/θ)
is isomorphic to the interval 1/θ in Con L.

2The corresponding statement is true for any equationally defined class of algebras, including

modular, Arguesian and distributive lattices.
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Proof. A congruence relation on L/θ is an equivalence relation R on the θ-classes
of L such that

xθ R yθ implies xθ ∨ zθ R yθ ∨ zθ

and analogously for meets. Given R ∈ Con L/θ, define the corresponding relation
ρ on L by x ρ y iff xθ R yθ. Clearly ρ ∈ Eq L and θ ≤ ρ. Moreover, if x ρ y and
z ∈ L, then

(x ∨ z)θ = xθ ∨ zθ R yθ ∨ zθ = (y ∨ z)θ,

whence x ∨ z ρ y ∨ z, and similarly for meets. Hence ρ ∈ Con L, and we have
established an order preserving map f : Con L/θ → 1/θ.

Conversely, let σ ∈ 1/θ in Con L, and define a relation S on L/θ by xθ S yθ iff
xσ y. Since θ ≤ σ the relation S is well defined. If xθ S yθ and z ∈ L, then xσ y
implies x ∨ z σ y ∨ z, whence

xθ ∨ zθ = (x ∨ z)θ S (y ∨ z)θ = yθ ∨ zθ,

and likewise for meets. Thus S is a congruence relation on L/θ. This gives us an
order preserving map g : 1/θ → Con L/θ.

The definitions make f and g inverse maps, so they are in fact isomorphisms. �

It is interesting to interpret the Second Isomorphism Theorem in terms of homo-
morphisms. Essentially it corresponds to the fact that if h : L� K and f : L →M
are homomorphisms with h surjective, then there is a homomorphism g : K → M
with f = gh if and only if kerh ≤ ker f .

A lattice L is called simple if Con L is a two element chain, i.e., |L| > 1 and L has
no congruences except equality and the universal relation. For example, the lattice
Mn is simple whenever n ≥ 3. A lattice is subdirectly irreducible if it has a unique
minimum nonzero congruence relation, i.e., if 0 is completely meet irreducible in
Con L. So every simple lattice is subdirectly irreducible, and N5 is an example of
a subdirectly irreducible lattice which is not simple .

The following are immediate consequences of the Second Isomorphism Theorem.

Corollary. L/θ is simple if and only if 1 � θ in Con L.

Corollary. L/θ is subdirectly irreducible if and only if θ is completely meet irre-
ducible in Con L.

Now we turn our attention to a decomposition of lattices which goes back to
R. Remak in 1930 (for groups) [7]. In what follows, it is important to remember
that the zero element of a congruence lattice is the equality relation.

Theorem 5.5. If 0 =
∧
i∈I θi in Con L, then L is isomorphic to a sublattice of the

direct product
∏
i∈I L/θi, and each of the natural homomorphisms πi : L → L/θi is

surjective.
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Conversely, if L is isomorphic to a sublattice of a direct product
∏
i∈I Ki and each

of the projection homomorphisms πi : L → Ki is surjective, then Ki ∼= L/ ker πi and∧
i∈I ker πi = 0 in Con L.

Proof. For any collection θi (i ∈ I) in Con L, there is a natural homomorphism
π : L →

∏
L/θi with (π(x))i = xθi. Since two elements of a direct product are

equal if and only if they agree in every component, ker π =
∧
θi. So if

∧
θi = 0,

then π is an embedding.
Conversely, if π : L →

∏
Ki is an embedding, then kerπ = 0, while as above

ker π =
∧

kerπi. Clearly, if πi(L) = Ki then Ki ∼= L/ ker πi. �

A representation of L satisfying either of the equivalent conditions of Theorem 5.5
is called a subdirect decomposition, and the corresponding external construction is
called a subdirect product. For example, Figure 5.1 shows how a six element lattice
L can be written as a subdirect product of two copies of N5.

x

y

z

1

0

〈x, z〉

〈y, z〉

〈z, x〉

〈z, y〉

〈1, 1〉

〈0, 0〉
N5 L

Figure 5.1

Next we should show that subdirectly irreducible lattices are indeed those which
have no proper subdirect decomposition.

Theorem 5.6. The following are equivalent for a lattice L.

(1) L is subdirectly irreducible, i.e., 0 is completely meet irreducible in Con L.
(2) There is a unique minimal nonzero congruence µ on L with the property that

θ ≥ µ for every nonzero θ ∈ Con L.
(3) If L is isomorphic to a sublattice of

∏
Ki, then some projection homomor-

phism πi is one-to-one.
(4) There exists a pair of elements a < b in L such that a θ b for every nonzero

congruence θ.
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The congruence µ of condition (2) is called the monolith of the subdirectly irre-
ducible lattice L, and the pair (a, b) of condition (4), which need not be unique, is
called a critical pair.

Proof. The equivalence of (1), (2) and (3) is a simple combination of Theorems 3.8
and 5.5. We get (2) implies (4) by taking a = x ∧ y and b = x ∨ y for any pair
of distinct elements with xµ y. On the other hand, if (4) holds we obtain (2) with
µ = con(a, b). �

Now we see the beauty of Birkhoff’s Theorem 3.9, that every element in an
algebraic lattice is a meet of completely meet irreducible elements. By applying this
to the zero element of Con L, we obtain the following fundamental result.

Theorem 5.7. Every lattice is a subdirect product of subdirectly irreducible lattices.

It should be clear that, with the appropriate modifications, Theorems 5.5 to 5.7
yield subdirect decompositions of groups, rings, semilattices, etc. into subdirectly
irreducible algebras of the same type. Keith Kearnes [5] has shown that there are
interesting varieties of algebras whose congruence lattices are strongly atomic. By
Theorem 3.10, these algebras have irredundant subdirect decompositions.

Subdirectly irreducible lattices play a particularly important role in the study of
varieties (Chapter 7).

So far we have just done universal algebra with lattices: with the appropriate
modifications, we can characterize congruence relations and show that Con A is an
algebraic lattice for any algebra A. (See Exercises 10 and 11.) However, the next
property is special to lattices (and related structures). It was first discovered by
N. Funayama and T. Nakayama [2] in the early 1940’s.

Theorem 5.8. If L is a lattice, then Con L is a distributive algebraic lattice.

Proof. In any lattice L, let

m(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z).

Then it is easy to see that m(x, y, z) is a majority polynomial, in that if any two
variables are equal then m(x, y, z) takes on that value:

m(x, x, z) = x

m(x, y, x) = x

m(x, z, z) = z.

Now let α, β, γ ∈ Con L. Clearly (α ∧ β) ∨ (α ∧ γ) ≤ α ∧ (β ∨ γ). To show the
reverse inclusion, let x, z ∈ α ∧ (β ∨ γ). Then xα z and there exist y1, . . . , yk such
that

x = y0 β y1 γ y2 β . . . yk = z .
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Let ti = m(x, yi, z) for 0 ≤ i ≤ k. Then

t0 = m(x, x, z) = x

tk = m(x, z, z) = z

and for all i,
ti = m(x, yi, z) α m(x, yi, x) = x ,

so ti α ti+1 by Exercise 4(b). If i is even, then

ti = m(x, yi, z) β m(x, yi+1, z) = ti+1 ,

whence ti α ∧ β ti+1. Similarly, if i is odd then ti α ∧ γ ti+1. Thus

x = t0 α ∧ β t1 α ∧ γ t2 α ∧ β . . . tk = z

and we have shown that α ∧ (β ∨ γ) ≤ (α ∧ β) ∨ (α ∧ γ). As inclusion holds both
ways, we have equality. Therefore Con L is distributive. �

What else can you say about congruence lattices of lattices? Is every distribu-
tive algebraic lattice isomorphic to the congruence lattice of a lattice? This is the
$64,000 question. But while the general question remains open, it is known that a
distributive algebraic lattice D is isomorphic to the congruence lattice of a lattice if

(i) D ∼= O(P) for some ordered set P (R. P. Dilworth, see [3]), or
(ii) the compact elements are a sublattice of D (E. T. Schmidt [8]), or
(iii) D has at most ℵ1 compact elements (A. Huhn [4]).

Thus a counterexample, if there is one, would have to be quite large and compli-
cated.3 In Chapter 10 we will prove (i), which includes the fact that every finite
distributive lattice is isomorphic to the congruence lattice of a (finite) lattice.

We need to understand the congruence operator conQ, where Q is a set of pairs,
a little better. A weaving polynomial on a lattice L is a member of the set W of
unary functions defined recursively by

(1) w(x) = x ∈W ,
(2) if w(x) ∈W and a ∈ L, then u(x) = w(x)∧a and v(x) = w(x)∨a are in W ,
(3) only these functions are in W .

Thus every weaving polynomial looks something like

w(x) = (. . . (((x ∧ s1) ∨ s2) ∧ s3) . . . ) ∨ sk

where si ∈ L for 1 ≤ i ≤ k. The following characterization is a modified version of
one found in Dilworth [1].

3It is not even known whether every distributive algebraic lattice is isomorphic to the congruence

lattice of an algebra with finitely many operations. For recent results on these problems, see

M. Tischendorf [9] and M. Ploščica, J. Tůma and F. Wehrung [6], [10].

50



Theorem 5.9. Suppose ai < bi for i ∈ I. Then (x, y) ∈
∨
i∈I con(ai, bi) if and only

if there exist finitely many rj ∈ L, wj ∈W , and ij ∈ I such that

x ∨ y = r0 ≥ r1 ≥ · · · ≥ rk = x ∧ y

with wj(bij ) = rj and wj(aij ) = rj+1 for 0 ≤ j < k.

Proof. Let R be the set of all pairs (x, y) satisfying the condition of the theorem. It
is clear that

(1) (ai, bi) ∈ R for all i,
(2) R ⊆

∨
i∈I con(ai, bi).

Hence, if we can show that R is a congruence relation, it will follow that R =∨
i∈I con(ai, bi).
Note that (x, y) ∈ R if and only if (x∧ y, x∨ y) ∈ R. It also helps to observe that

if xR y and x ≤ u ≤ v ≤ y, then uR v. To see this, replace the weaving polynomials
w(t) witnessing xR y by new polynomials w′(t) = (w(t) ∨ u) ∧ v.

First we must show R ∈ Eq L. Reflexivity and symmetry are obvious, so let
xR y R z with

x ∨ y = r0 ≥ r1 ≥ · · · ≥ rk = x ∧ y

using polynomials wj ∈W , and

y ∨ z = s0 ≥ s1 ≥ · · · ≥ sm = y ∧ z

via polynomials vj ∈ W , as in the statement of the theorem. Replacing wj(t) by
w′j(t) = wj(t) ∨ y ∨ z, we obtain

x ∨ y ∨ z = r0 ∨ y ∨ z ≥ r1 ∨ y ∨ z ≥ · · · ≥ (x ∧ y) ∨ y ∨ z = y ∨ z.

Likewise, replacing wj(t) by w′′j (t) = wj(t) ∧ y ∧ z, we have

y ∧ z = (x ∨ y) ∧ y ∧ z ≥ r1 ∧ y ∧ z ≥ · · · ≥ rk ∧ y ∧ z = x ∧ y ∧ z.

Combining the two new sequences with the original one for y R z, we get a sequence
from x ∨ y ∨ z down to x ∧ y ∧ z. Hence x ∧ y ∧ z R x ∨ y ∨ z. By the observations
above, x ∧ z R x ∨ z and xR z, so R is transitive.

Now we must check (‡). Let xR y as before, and let z ∈ L. Replacing wj(t) by
uj(t) = wj(t) ∨ z, we obtain a sequence from x ∨ y ∨ z down to (x ∧ y) ∨ z. Thus
(x ∧ y) ∨ z R x ∨ y ∨ z, and since (x ∧ y) ∨ z ≤ (x ∨ z) ∧ (y ∨ z) ≤ x ∨ y ∨ z, this
implies x ∨ z R y ∨ z. The argument for meets is done similarly, and we conclude
that R is a congruence relation, as desired. �

The condition of Theorem 5.9 is a bit unwieldy, but not as bad to use as you
might think. Let us look at some consequences of the theorem.
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Corollary. If θi ∈ Con L for i ∈ I, then (x, y) ∈
∨
i∈I θi if and only if there exist

finitely many rj ∈ L and ij ∈ I such that

x ∨ y = r0 ≥ r1 ≥ · · · ≥ rk = x ∧ y
and rj θij rj+1 for 0 ≤ j < k.

At this point we need some basic facts about distributive algebraic lattices (like
Con L). Recall that an element p of a complete lattice is completely join irreducible
if p =

∨
Q implies p = q for some q ∈ Q. An element p is completely join prime if

p ≤
∨
Q implies p ≤ q for some q ∈ Q. Clearly every completely join prime element

is completely join irreducible, but in general completely join irreducible elements
need not be join prime.

Now every algebraic lattice has lots of completely meet irreducible elements (by
Theorem 3.9), but they may have no completely join irreducible elements. This hap-
pens, for example, in the lattice consisting of the empty set and all cofinite subsets of
an infinite set (which is distributive and algebraic). However, such completely join
irreducible elements as there are in a distributive algebraic lattice are completely
join prime!

Theorem 5.10. The following are equivalent for an element p in an algebraic dis-
tributive lattice.

(1) p is completely join prime.
(2) p is completely join irreducible.
(3) p is compact and (finitely) join irreducible.

Proof. Clearly (1) implies (2), and since every element in an algebraic lattice is a
join of compact elements, (2) implies (3).

Let p be compact and finitely join irreducible, and assume p ≤
∨
Q. As p is

compact, p ≤
∨
F for some finite subset F ⊆ Q. By distributivity, this implies

p = p∧ (
∨
F ) =

∨
q∈F p∧q. Since p is join irreducible, p = p∧q ≤ q for some q ∈ F .

Thus p is completely join prime. (Cf. Exercise 3.1) �
We will return to the theory of distributive lattices in Chapter 8, but let us now

apply what we know to Con L. As an immediate consequence of the Corollary to
Theorem 5.9 we have the following.

Theorem 5.11. If a ≺ b, then con(a, b) is completely join prime in Con L.

The converse is false, as there are infinite simple lattices with no covering rela-
tions. However, for finite lattices, or more generally principally chain finite lattices,
the converse does hold. A lattice is principally chain finite if every principal ideal
c/0 satisfies the ACC and DCC. This is a fairly natural finiteness condition which
includes many interesting infinite lattices, and many results for finite lattices can be
extended to principally chain finite lattices with a minimum of effort. Recall that if
x is a join irreducible element in such a lattice, then x∗ denotes the unique element
such that x � x∗.
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Theorem 5.12. Let L be a principally chain finite lattice. Then every congruence
relation on L is the join of completely join irreducible congruences. Moreover, ev-
ery completely join irreducible congruence is of the form con(x, x∗) for some join
irreducible element x of L.

Proof. Every congruence relation is a join of compact congruences, and every com-
pact congruence is a join of finitely many congruences con(a, b) with a > b. In a prin-
cipally chain finite lattice, every chain in a/b is finite by Exercise 1.5, so there exists a
covering chain a = r0 � r1 � · · · � rk = b. Clearly con(a, b) =

∨
0≤j<k con(rj , rj+1),

and these latter are completely join prime by Theorem 5.11. Thus every congruence
relation on L is the join of completely join irreducible congruences con(r, s) with
r � s.

Now let a � b be any covering pair in L. By the DCC for a/0, there is an element
x which is minimal with respect to the properties x ≤ a and x � b. Since any
element strictly below x is below b, the element x is join irreducible and x∗ = x∧ b.
It is also true that a = x ∨ b, since b < x ∨ b ≤ a, and it follows easily from these
two facts that con(a, b) = con(x, x∗). �

We will return to congruence lattices of principally chain finite lattices in Chap-
ter 10.

Exercises for Chapter 5

1. Find Con L for the lattices (a) Mn where n ≥ 3, (b) N5, (c) the lattice L of
Figure 5.1, and the lattices in Figure 5.2.

(d) (e) (f)
Figure 5.2

2. An element p of a lattice L is join prime if for any finite subset F of L, p ≤
∨
F

implies p ≤ f for some f ∈ F . Let P(L) denote the set of join prime elements of L,
and define

x ∆ y iff x/0 ∩ P(L) = y/0 ∩ P(L).
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Prove that ∆ is a congruence relation on L.
3. Let X be any set. Define a binary relation on P(X) by A ≈ B iff the symmetric

difference (A−B)∪(B−A) is finite. Prove that ≈ is a congruence relation on P(X).
4. Lattice terms are defined in the proof of Theorem 6.1.
(a) Show that if p(x1, . . . , xn) is a lattice term and h : L → K is a homomor-

phism, then h(p(a1, . . . , an)) = p(h(a1), . . . , h(an)) for all a1, . . . , an ∈ L.
(b) Show that if p(x1, . . . , xn) is a lattice term and θ ∈ Con L and ai θ bi for

1 ≤ i ≤ n, then p(a1, . . . , an) θ p(b1, . . . , bn).
(c) Let p(x1, . . . , xn) and q(x1, . . . , xn) be lattice terms, and let h : L� K be a

surjective homomorphism. Prove that if p(a1, . . . , an) = q(a1, . . . , an) for all
a1, . . . , an ∈ L, then p(c1, . . . , cn) = q(c1, . . . , cn) holds for all c1, . . . , cn ∈ K.

5. Show that each element of a finite distributive lattice has a unique irredundant
decomposition. What does this say about subdirect decompositions of finite lattices?

6. Let θ ∈ Con L.
(a) Show that x � y implies xθ � yθ or xθ = yθ.
(b) Prove that if L is a finite semimodular lattice, then so is L/θ.
(c) Prove that a subdirect product of semimodular lattices is semimodular.

7. Prove that Con L1 × L2
∼= Con L1 ×Con L2. (Note that this is not true

for groups; see Exercise 9.)
8. Let L be a finitely generated lattice, and let θ be a congruence on L such that

L/θ is finite. Prove that θ is compact.
9. Find the congruence lattice of the abelian group Zp × Zp, where p is prime.

Find all finite abelian groups whose congruence lattice is distributive. (Recall that
the congruence lattice of an abelian group is isomorphic to its subgroup lattice.)

For Exercises 10 and 11 we refer to §3 (Universal Algebra) of Appendix 1.

10. Let A = 〈A;F , C〉 be an algebra.
(a) Prove that if h : A → B is a homomorphism and θ = ker h, then for each

f ∈ F ,

(U) xi θ yi for 1 ≤ i ≤ n implies f(x1, . . . , xn) θ f(y1, . . . , yn).

(b) Prove that (U) is equivalent to the apparently weaker condition that for all
f ∈ F and every i,

($) xi θ y implies f(x1, . . . , xi, . . . xn) θ f(x1, . . . , y, . . . xn).

(c) Show that if θ ∈ Eq A satisfies (U), then the natural map h : A → A/θ is a
homomorphism with θ = kerh.

Thus congruence relations, defined as homomorphism kernels, are precisely equiva-
lence relations satisfying (U).
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11. Accordingly, let Con A = {θ ∈ Eq A : θ satisfies (U)}.
(a) Prove that Con A is a complete sublattice of Eq A. (In particular, you

must show that
∨

and
∧

are the same in both lattices.)
(b) Show that Con A is an algebraic lattice.
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6. Free Lattices

Freedom’s just another word for nothing left to lose ....
–Kris Kristofferson

If x, y and z are elements of a lattice, then x∨ (y∨ (x∧z)) = x∨y is always true,
while x ∨ y = z is usually not true. Is there an algorithm which, given two lattice
expressions p and q, determines whether p = q holds for every substitution of the
variables in every lattice? The answer is yes, and finding this algorithm (Corollary
to Theorem 6.2) is our original motivation for studying free lattices.

We say that a lattice L is generated by a set X ⊆ L if no proper sublattice of L
contains X. In terms of the subalgebra closure operator Sg introduced in Chapter 3,
this means Sg(X) = L.

A lattice F is freely generated by X if
(I) F is a lattice,

(II) X generates F ,
(III) for every lattice L, every map h0 : X → L can be extended to a homomor-

phism h : F → L.
A free lattice is a lattice which is freely generated by one of its subsets.

Condition (I) is sort of redundant, but we include it because it is important
when constructing a free lattice to be sure that the algebra constructed is indeed
a lattice. In the presence of condition (II), there is only one way to define the
homomorphism h in condition (III): for example, if x, y, z ∈ X then we must have
h(x∨ (y∧ z)) = h0(x)∨ (h0(y)∧h0(z)). Condition (III) really says that this natural
extension is well defined. This in turn says that the only time two lattice terms in
the variables X are equal in F is when they are equal in every lattice.

Now the class of lattices is an equational class, i.e., it is the class of all algebras
with a fixed set of operation symbols (∨ and ∧) satisfying a given set of equations
(the idempotent, commutative, associative and absorption laws). Equational classes
are also known as varieties, and in Chapter 7 we will take a closer look at varieties
of lattices. A fundamental theorem of universal algebra, due to Garrett Birkhoff [1],
says that given any nontrivial1 equational class V and any set X, there is an algebra
in V freely generated by X. Thus the existence of free groups, free semilattices,
and in particular free lattices is guaranteed.2 Likewise, there are free distributive

1A variety T is trivial if it satisfies the equation x ≈ y, which means that every algebra in T

has exactly one element. This is of course the smallest variety of any type.
2However, there is no free lunch.
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lattices, free modular lattices, and free Arguesian lattices, since each of these laws
can be written as a lattice equation.

Theorem 6.1. For any nonempty set X, there exists a free lattice generated by X.

The proof uses three basic principles of universal algebra. These correspond for
lattices to Theorems 5.1, 5.4, and 5.5 respectively. However, the proofs of these
theorems involved nothing special to lattices except the operation symbols ∧ and ∨;
these can easily be changed to arbitrary operation symbols. Thus, with only minor
modification, the proof of this theorem can be adapted to show the existence of free
algebras in any nontrivial equational class of algebras.

Basic Principle 1. If h : A� B is a surjective homomorphism, then B ∼= A/ kerh.
Basic Principle 2. If f : A → B and g : A � C are homomorphism with g

surjective, and ker g ≤ ker f , then there exists h : C → B such that f = hg.

A B

C

f

g h

Figure 6.1

Basic Principle 3. If ψ =
∧
i∈I θi in Con A, then A/ψ is isomorphic to a

subalgebra of the direct product Πi∈IA/θi.
With these principles in hand, we proceed with the proof of Theorem 6.1.

Proof of Theorem 6.1. Given the set X, define the word algebra W (X) to be the set
of all formal expressions (strings of symbols) satisfying the following properties:

(1) X ⊆W (X),
(2) if p, q ∈W (X), then (p ∨ q) and (p ∧ q) are in W (X),
(3) only the expressions given by the first two rules are in W (X).

Thus W (X) is the absolutely free algebra with operation symbols ∨ and ∧ generated
by X. The elements of W (X), which are called terms, are all well-formed expressions
in the variables X and the operation symbols ∧ and ∨. Clearly W (X) is an algebra
generated by X, which is property (II) from the definition of a free lattice. Because
two terms are equal if and only if they are identical, W (X) has the mapping property
(III). On the other hand, it is definitely not a lattice. We need to identify those
pairs p, q ∈W (X) which evaluate the same in every lattice, e.g., x and (x∧ (x∨y)).
The point of the proof is that when this is done, properties (II) and (III) still hold.

Let Λ = {θ ∈ Con W (X) : W (X)/θ is a lattice}, and let λ =
∧

Λ. We claim
that W (X)/λ is a lattice freely generated by {xλ : x ∈ X}.
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By Basic Principle 3, W (X)/λ is isomorphic to a subalgebra of a direct product
of lattices, so it is a lattice.3 Clearly W (X)/λ is generated by {xλ : x ∈ X}, and
because there exist nontrivial lattices (more than one element) for X to be mapped
to in different ways, x 6= y implies xλ 6= yλ for x, y ∈ X.

Now let L be a lattice and let f0 : X → L be any map. By the preceding
observation, the corresponding map h0 : X/λ → L defined by h0(xλ) = f0(x)
is well defined. Now f0 can be extended to a homomorphism f : W (X) → L,
whose range is some sublattice S of L. By Basic Principle 1, W (X)/ ker f ∼= S so
ker f ∈ Λ, and hence ker f ≥ λ. If we use ε to denote the standard homomorphism
W (X)� W (X)/λ with ε(u) = uλ for all u ∈ W (X), then ker f ≥ ker ε = λ. Thus
by Basic Principle 2 there exists a homomorphism h : W (X)/λ → L with hε = f
(see Figure 6.2). This means h(uλ) = f(u) for all u ∈ W (X); in particular, h
extends h0 as required. �

W (X) L

W (X)/λ

f

ε h

Figure 6.2

It is easy to see, using the mapping property (III), that if F is a lattice freely
generated by X, G is a lattice freely generated by Y , and |X| = |Y |, then F ∼= G.
Thus we can speak of the free lattice generated by X, which we will denote by
FL(X). If |X| = n, then we also denote this lattice by FL(n). The lattice FL(2)
has four elements, so there is not much to say about it. But FL(n) is infinite for
n ≥ 3, and we want to investigate its structure.

The advantage of the general construction we used is that it gives us the existence
of free algebras in any variety; the disadvantage is that it does not, indeed cannot,
tell us anything about the arithmetic of free lattices. For this we need a result due
to Thoralf Skolem [15] (reprinted in [16]), and independently, P. M. Whitman [18]
in 1941.4

3This is where we use that lattices are equationally defined. For example, the class of integral

domains is not equationally defined, and the direct product of two or more integral domains is not

one.
4The history here is rather interesting. Skolem, as part of his 1920 paper which proves the

Lowenheim-Skolem Theorem, solved the word problem not only for free lattices, but for finitely

presented lattices as well. But by the time the great awakening of lattice theory occurred in the

1930’s, his solution had been forgotten. Thus Whitman’s 1941 construction of free lattices became

the standard reference on the subject. It was not until 1992 that Stan Burris rediscovered Skolem’s

solution.
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Theorem 6.2. Every free lattice FL(X) satisfies the following conditions, where
x, y ∈ X and p, q, p1, p2, q1, q2 ∈ FL(X).

(1) x ≤ y iff x = y.
(2) x ≤ q1 ∨ q2 iff x ≤ q1 or x ≤ q2.
(3) p1 ∧ p2 ≤ x iff p1 ≤ x or p2 ≤ x.
(4) p1 ∨ p2 ≤ q iff p1 ≤ q and p2 ≤ q.
(5) p ≤ q1 ∧ q2 iff p ≤ q1 and p ≤ q2.
(6) p = p1 ∧ p2 ≤ q1 ∨ q2 = q iff p1 ≤ q or p2 ≤ q or p ≤ q1 or p ≤ q2.

Finally, p = q iff p ≤ q and q ≤ p.

Condition (6) in Theorem 6.2 is known as Whitman’s condition, and it is usually
denoted by (W).

Proof of Theorem 6.2. Properties (4) and (5) hold in every lattice, by the definition
of least upper bound and greatest lower bound, respectively. Likewise, the “if ”
parts of the remaining conditions hold in every lattice.

We can take care of (1) and (2) simultaneously. Fixing x ∈ X, let

Gx = {w ∈ FL(X) : w ≥ x or w ≤
∨
F for some finite F ⊆ X − {x}}.

Then X ⊆ Gx, and Gx is closed under joins and meets, so Gx = FL(X). Thus every
w ∈ FL(X) is either above x or below

∨
F for some finite F ⊆ X −{x}. Properties

(1) and (2) will follow if we can show that this “or” is exclusive: x �
∨
F for all

finite F ⊆ X − {x}. So let h0 : X → 2 (the two element chain) be defined by
h0(x) = 1, and h0(y) = 0 for y ∈ X − {x}. This map extends to a homomorphism
h : FL(X) → 2. For every finite F ⊆ X − {x} we have h(x) = 1 � 0 = h(

∨
F ),

whence x �
∨
F .

Condition (3) is the dual of (2). Note that the proof shows x �
∧
G for all finite

G ⊆ X − {x}.
Whitman’s condition (6), or (W), can be proved using a slick construction due

to Alan Day [3]. This construction can be motivated by a simple example. In the
lattice of Figure 6.3(a), the elements a, b, c, d fail (W); in Figure 6.3(b) we have
“fixed” this failure by making a∧ b � c∨ d. Day’s method provides a formal way of
doing this for any (W)-failure.

Let I = u/v be an interval in a lattice L. We define a new lattice L[I] as follows.
The universe of L[I] is (L− I) ∪ (I × 2). Thus the elements of L[I] are of the form
x with x /∈ I, and (y, i) with i ∈ {0, 1} and y ∈ I. The order on L[I] is defined by:

x ≤ y if x ≤L y
(x, i) ≤ y if x ≤L y
x ≤ (y, j) if x ≤L y

(x, i) ≤ (y, j) if x ≤L y and i ≤ j.
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(a) (b)

c d

u

v

a b

c d (v, 0)

(v, 1)

a b

(u, 0)

(u, 1)

Figure 6.3

It is not hard to check the various cases to show that each pair of elements in L[I]
has a meet and join, so that L[I] is indeed a lattice.5 Moreover, the natural map
κ : L[I] � L with κ(x) = x and κ((y, i)) = y is a homomorphism. Figure 6.4 gives
another example of the doubling construction, where the doubled interval consists
of a single element {u}.

Now suppose a, b, c, d witness a failure of (W) in FL(X). Let u = c∨ d, v = a∧ b
and I = u/v. Let h0 : X → FL(X)[I] with h0(x) = x if x /∈ I, h0(y) = (y, 0) if
y ∈ I, and extend this map to a homomorphism h. Now κh : FL(X) → FL(X) is
also a homomorphism, and since κh(x) = x for all x ∈ X, it is in fact the identity.
Therefore h(w) ∈ κ−1(w) for all w ∈ FL(X). Since a, b, c, d /∈ I, this means h(t) = t
for t ∈ {a, b, c, d}. Now v = a∧ b ≤ c∨ d = u in FL(X), so h(v) ≤ h(u). But we can
calculate

h(v) = h(a) ∧ h(b) = a ∧ b = (v, 1) � (u, 0) = c ∨ d = h(c) ∨ h(d) = h(u)

in FL(X)[I], a contradiction. Thus (W) holds in FL(X). �

Theorem 6.2 gives us a solution to the word problem for free lattices, i.e., an
algorithm for deciding whether two lattice terms p, q ∈W (X) evaluate to the same
element in FL(X) (and hence in all lattices). Strictly speaking, we have an eval-
uation map ε : W (X) → FL(X) with ε(x) = x for all x ∈ X, and we want to
decide whether ε(p) = ε(q). Following tradition, however, we suppress the ε and
ask whether p = q in FL(X).

5This construction yields a lattice if, instead of requiring that I be an interval, we only ask that

it be convex, i.e., if x, z ∈ I and x ≤ y ≤ z, then y ∈ I . This generalized construction has also

proved very useful, but we will not need it here.
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(u, 0)

(u, 1)

Figure 6.4

Corollary. Let p, q ∈W (X). To decide whether p ≤ q in FL(X), apply the condi-
tions of Theorem 6.2 recursively. To test whether p = q in FL(X), check both p ≤ q
and q ≤ p.

The algorithm works because it eventually reduces p ≤ q to a statement involving
the conjunction and disjunction of a number of inclusions of the form x ≤ y, each of
which holds if and only if x = y. Using the algorithm requires a little practice; you
should try showing that x∧(y∨z) � (x∧y)∨(x∧z) in FL(X), which is equivalent to
the statement that not every lattice is distributive.6 To appreciate its significance,
you should know that it is not always possible to solve the word problem for free
algebras. For example, the word problem for a free modular lattice FM(X) is not
solvable if |X| ≥ 4 (see Chapter 7).

By isolating the properties which do not hold in every lattice, we can rephrase
Theorem 6.2 in the following useful form.

Theorem 6.3. A lattice F is freely generated by its subset X if and only if F is
generated by X, F satisfies (W ), and the following two conditions hold for each
x ∈ X:

(1) if x ≤
∨
G for some finite G ⊆ X, then x ∈ G;

(2) if x ≥
∧
H for some finite H ⊆ X, then x ∈ H.

It is worthwhile to compare the roles of Eq X and FL(X): every lattice can be
embedded into a lattice of equivalence relations, while every lattice is a homomorphic
image of a free lattice.

6The algorithm for the word problem, and other free lattice algorithms, can be efficiently

programmed; see Chapter XI of [6]. These programs have proved to be a useful tool in the

investigation of the structure of free lattices.
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Note that it follows from (W) that no element of FL(X) is properly both a meet
and a join, i.e., every element is either meet irreducible or join irreducible. Moreover,
the generators are the only elements which are both meet and join irreducible. It
follows that the generating set of FL(X) is unique. This is very different from the
situation say in free groups: the free group on {x, y} is also generated (freely) by
{x, xy}.

Each element w ∈ FL(X) corresponds to an equivalence class of terms in W (X).
Among the terms which evaluate to w, there may be several of minimal length (total
number of symbols), e.g., (x ∨ (y ∨ z)), ((y ∨ x) ∨ z), etc. Note that if a term p can
be obtained from a term q by applications of the associative and commutative laws
only, then p and q have the same length. This allows us to speak of the length of a
term t =

∨
ti without specifying the order or parenthesization of the joinands, and

likewise for meets. We want to show that a minimal length term for w is unique
up to associativity and commutativity. This is true for generators, so by duality it
suffices to consider the case when w is a join.

Lemma 6.4. Let t =
∨
ti in W (X), where each ti is either a generator or a meet.

Assume that ε(t) = w and ε(ti) = wi under the evaluation map ε : W (X)→ FL(X).
If t is a minimal length term representing w, then the following are true.

(1) Each ti is of minimal length.
(2) The wi’s are pairwise incomparable.
(3) If ti is not a generator, so ti =

∧
j tij, then ε(tij) = wij � w for all j.

Proof. Only (3) requires explanation. Suppose wi =
∧
wij in FL(X), corresponding

to ti =
∧
tij in W (X). Note that wi ≤ wij for all j. If for some j0 we also had

wij0 ≤ w, then
w =

∨
wi ≤ wij0 ∨

∨
k 6=i

wk ≤ w,

whence w = wij0 ∨
∨
k 6=iwk. But then replacing ti by tij0 would yield a shorter term

representing w, a contradiction. �
If A and B are finite subsets of a lattice, we say that A refines B, written A� B,

if for each a ∈ A there exists b ∈ B with a ≤ b. We define dual refinement by C � D
if for each c ∈ C there exists d ∈ D with c ≥ d; note that because of the reversed
order of the quantification in the two statements, A� B is not the same as B � A.
The elementary properties of refinement can be set out as follows, with the proofs
left as an exercise.

Lemma 6.5. The refinement relation has the following properties.
(1) A� B implies

∨
A ≤

∨
B.

(2) The relation � is a quasiorder on the finite subsets of L.
(3) If A ⊆ B then A� B.
(4) If A is an antichain, A� B and B � A, then A ⊆ B.
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(5) If A and B are antichains with A� B and B � A, then A = B.
(6) If A� B and B � A, then A and B have the same set of maximal elements.

The preceding two lemmas are connected as follows.

Lemma 6.6. Let w =
∨

1≤i≤k wi =
∨

1≤j≤m uj in FL(X). If each wi is either a
generator or a meet wi =

∧
j wij with wij � w for all j, then

{w1, . . . , wm} � {u1, . . . , un}.

Proof. For each i we have wi ≤
∨
uj . If wi is a generator, this implies wi ≤ uk for

some k by Theorem 6.2(2). If wi =
∧
wij , we apply Whitman’s condition (W) to

the inclusion wi =
∧
wij ≤

∨
uk = w. Since we are given that wij � w for all j, it

must be that wi ≤ uk for some k. Hence {w1, . . . , wm} � {u1, . . . , un}. �
Now let t =

∨
ti and s =

∨
sj be two minimal length terms which evaluate

to w in FL(X). Let ε(ti) = wi and ε(sj) = uj , so that w =
∨
wi =

∨
uj

in FL(X). By Lemma 6.4(1) each ti is a minimal length term for wi, and each
sj is a minimal length term for uj . By induction, these are unique up to as-
sociativity and commutativity. Hence we may assume that ti = sj whenever
wi = uj . By Lemma 6.4(2), the sets {w1, . . . , wm} and {u1, . . . , un} are antichains
in FL(X). By Lemma 6.4(3), the elements wi satisfy the hypothesis of Lemma 6.6,
so {w1, . . . , wm} � {u1, . . . , un}. Symmetrically, {u1, . . . , un} � {w1, . . . , wm}. Ap-
plying Lemma 6.5(5) yields {w1, . . . , wm} = {u1, . . . , un}, whence by our assumption
above {t1, . . . , tm} = {s1, . . . , sn}. Thus we obtain the desired uniqueness result.

Theorem 6.7. The minimal length term for w ∈ FL(X) is unique up to associa-
tivity and commutativity.

This minimal length term is called the canonical form of w. The canonical form
of a generator is just x. The proof of the theorem has shown that if w is a proper
join, then its canonical form is determined by the conditions of Lemma 6.4. If w is
a proper meet, then of course its canonical form must satisfy the dual conditions.

The proof of Lemma 6.4 gives us an algorithm for finding the canonical form of
a lattice term. Let t =

∨
ti in W (X), where each ti is either a generator or a meet,

and suppose that we have already put each ti into canonical form, which we can do
inductively. This will guarantee that condition (1) of Lemma 6.4 holds when we are
done. For each ti which is not a generator, say ti =

∧
tij , check whether any tij ≤ t

in FL(X); if so, replace ti by tij . Continue this process until you have an expression
u =

∨
ui which satisfies condition (3). Finally, check whether ui ≤ uj in FL(X)

for any pair i 6= j; if so, delete ui. The resulting expression v =
∨
vi evaluates to

the same element as t in FL(X), and v satisfies (1), (2) and (3). Hence v is the
canonical form of t.

If w =
∨
wi canonically in FL(X), then the elements wi are called the canonical

joinands of w (dually, canonical meetands). It is important to note that these
elements satisfy the refinement property of Lemma 6.6.
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Corollary. If w is a proper join in FL(X) and w =
∨
U , then the set of canonical

joinands of w refines U .

This has an important structural consequence, observed by Bjarni Jónsson [9].

Theorem 6.8. Free lattices satisfy the following implications, for all u, v, a, b, c ∈
FL(X):

(SD∨) if u = a ∨ b = a ∨ c then u = a ∨ (b ∧ c),

(SD∧) if v = a ∧ b = a ∧ c then v = a ∧ (b ∨ c).

The implications (SD∨) and (SD∧) are known as the semidistributive laws.

Proof. We will prove that FL(X) satisfies (SD∨); then (SD∧) follows by duality.
We may assume that u is a proper join, for otherwise u is join irreducible and the
implication is trivial. So let u = u1 ∨ . . . ∨ un be the canonical join decomposition.
By the Corollary above, {u1, . . . , un} refines both {a, b} and {a, c}. Any ui which is
not below a must be below both b and c, so in fact {u1, . . . , un} � {a, b∧ c}. Hence

u =
∨
ui ≤ a ∨ (b ∧ c) ≤ u ,

whence u = a ∨ (b ∧ c), as desired. �

Now let us recall some basic facts about free groups, so we can ask about their
analogs for free lattices. Every subgroup of a free group is free, and the countably
generated free group FG(ω) is isomorphic to a subgroup of FG(2). Every identity
which does not hold in all groups fails in some finite group.

Whitman used Theorem 6.3 and a clever construction to show that FL(ω) can
be embedded in FL(3). It is not known exactly which lattices are isomorphic to a
sublattice of a free lattice, but certainly they are not all free. The simplest result
(to state, not to prove) along these lines is due to J. B. Nation [11].

Theorem 6.9. A finite lattice can be embedded in a free lattice if and only if it
satisfies (W ), (SD∨) and (SD∧).

We can weaken the question somewhat and ask which ordered sets can be em-
bedded in free lattices. A characterization of sorts for these ordered sets was found
by Freese and Nation ([7] and [12]), but unfortunately it is not particularly enlight-
ening. We obtain a better picture of the structure of free lattices by considering the
following collection of results due to P. Crawley and R. A. Dean [2], B.. Jónsson [9],
and J. B. Nation and J. Schmerl [13], respectively.

Theorem 6.10. Every countable ordered set can be embedded in FL(3). On the
other hand, every chain in a free lattice is countable, so no uncountable chain can
be embedded in a free lattice. If P is an infinite ordered set which can be embedded
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in a free lattice, then the dimension d(P) ≤ m, where m is the smallest cardinal such
that |P| ≤ 2m.

R. A. Dean showed that every equation which does not hold in all lattices fails
in some finite lattice [5] (see Exercise 7.5). It turns out (though this is not obvious)
that this is related to a beautiful structural result of Alan Day ([4], using [10]).

Theorem 6.11. If X is finite, then FL(X) is weakly atomic.

The book Free Lattices by Freese, Ježek and Nation [6] contains more information
about the surprisingly rich structure of free lattices.

Exercises for Chapter 6

1. Verify that if L is a lattice and I is an interval in L, then L[I] is a lattice.
2. Use the doubling construction to repair the (W)-failures in the lattices in

Figure 6.5. (Don’t forget to double elements which are both join and meet reducible.)
Then repeat the process until you either obtain a lattice satisfying (W), or else prove
that you never will get one in finitely many steps.

(a) (b)
Figure 6.5

3. (a) Show that x ∧ ((x ∧ y) ∨ z) � y ∨ (z ∧ (x ∨ y)) in FL(X).
(b) Find the canonical form of x ∧ ((x ∧ y) ∨ (x ∧ z)).
(c) Find the canonical form of (x ∧ ((x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z))) ∨ (y ∧ z).
4. There are five small lattices which fail SD∨, but have no proper sublattice

failing SD∨. Find them.
5. Show that the following conditions are equivalent (to SD∨) in a finite lattice.
(a) u = a ∨ b = a ∨ c implies u = a ∨ (b ∧ c).
(b) For each m ∈ M(L) there is a unique j ∈ J(L) such that for all x ∈ L,

m∗ ∧ x 6≤ m iff x ≥ j.
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(c) For each a ∈ L, there is a set C ⊆ J(L) such that a =
∨
C, and for every

subset B ⊆ L, a =
∨
B implies C � B.

(d) u =
∨
i ui =

∨
j vj implies u =

∨
i,j(ui ∧ vj).

In a finite lattice satisfying these conditions, the elements of the set C given by part
(c) are called the canonical joinands of a.

6. An element p ∈ L is join prime if p ≤ x ∨ y implies p ≤ x or p ≤ y; meet
prime is defined dually. Let JP(L) denote the set of all join prime elements of L,
and let MP(L) denote the set of all meet prime elements of L. Let L be a finite
lattice satisfying SD∨.

(a) Prove that the canonical joinands of 1 are join prime.
(b) Prove that the coatoms of L are meet prime.
(c) Show that for each q ∈ MP(L) there exists a unique element η(q) ∈ JP(L)

such that L is the disjoint union of q/0 and 1/η(q).

7. Prove Lemma 6.5.
8. Let A and B be lattices, and let X ⊆ A generate A. Prove that a map

h0 : X → B can be extended to a homomorphism h : A → B if and only if, for every
pair of lattice terms p and q, and all x1, . . . , xn ∈ X,

p(x1, . . . , xn) = q(x1, . . . , xn) implies p(h0(x1), . . . , h0(xn)) = q(h0(x1), . . . , h0(xn)).

9. A complete lattice L has canonical decompositions if for each a ∈ L there exists
a set C of completely meet irreducible elements such that a =

∧
C irredundantly,

and a =
∧
B implies C � B. Prove that an upper continuous lattice has canon-

ical decompositions if and only if it is strongly atomic and satisfies SD∧ (Viktor
Gorbunov [8]).

For any ordered set P, a lattice F is said to be freely generated by P if F contains
a subset P such that

(1) P with the order it inherits from F is isomorphic to P,
(2) P generates F ,
(3) for every lattice L, every order preserving map h0 : P → L can be extended

to a homomorphism h : F → L.

In much the same way as with free lattices, we can show that there is a unique (up
to isomorphism) lattice FL(P) generated by any ordered set P. Indeed, free lattices
FL(X) are just the case when P is an antichain.

10. (a) Find the lattice freely generated by {x, y, z} with x ≥ y.
(b) Find FL(P) for P = {x0, x1, x2, z} with x0 ≤ x1 ≤ x2.

The lattice freely generated by Q = {x0, x1, x2, x3, z} with x0 ≤ x1 ≤ x2 ≤ x3

is infinite, as is that generated by R = {x0, x1, y0, y1} with x0 ≤ x1 and y0 ≤ y1

(Yu. I. Sorkin [17], see [14]).
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11. A homomorphism h : L → K is lower bounded if for each a ∈ K, {x ∈ L :
h(x) ≥ a} is either empty or has a least element β(a). For example, if L satisfies
the DCC, then h is lower bounded. We regard β as a partial map from K to L. Let
h : L → K be a lower bounded homomorphism.

(a) Show that the domain of β is an ideal of K.
(b) Prove that β preserves finite joins.
(c) Show that if h is onto and L satisfies SD∨, then so does K.
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