MATH 100 - MORE NOTES AND SOLUTIONS TO WORKSHEETS 4, 4B

We are considering three types of problems:

- Solve $ax = b$
- Solve $ax = 1$ (invertibility)
- Solve $xy = b$ (factor)

in three types of systems:

- integers mod n, \mathbb{Z}_n
- integers \mathbb{Z}
- Gaussian integers $\mathbb{Z}[i]$.

The questions are:

- Can they be solved?
- If so, how?
- If so, how many solutions?

Historically, the motivation was just scientific curiosity, but we will see applications, in particular to cryptography.

Here is a summary of the principles we use.

The equation $ax = b \mod n$ has a solution if and only if every divisor of both a and n is also a factor of b. We saw this both from observing the multiplication tables of \mathbb{Z}_n, and from looking at the equation $ax = b + qn$. When there is a solution, then there are d of them, where d is the greatest common divisor of a and n. Moreover, we have an efficient method for finding the solutions when the numbers are not too large.

When $a \neq 0 \mod n$ and n is prime, there is always a solution to $ax = b \mod n$.

The element a is invertible if $ax = 1$ has a solution. Note that 0 is never invertible, while ± 1 always are. If p is prime, then every nonzero element in \mathbb{Z}_p is invertible.

Every element in the integers or Gaussian integers has a unique factorization into primes. The primes in \mathbb{Z} you know. The Gaussian primes are ordinary primes p that are congruent to 3 mod 4, $1 \pm i$, and $a + bi$ where $a^2 + b^2$ is a prime that is congruent to 1 mod 4.

No prime number that is 3 mod 4 can be written as a sum of two squares. No number that has such a prime factor occurring an odd number of times in its prime factorization is a sum of two squares. Everything else is a sum of two squares. These statements seem complicated, but they are not so bad once you get used to them.

1. Worksheet 4 Solutions

(1) What are the invertible elements in

- \mathbb{Z}? 1, −1
- $\mathbb{Z}[i]$? 1, −1, i, −i
- \mathbb{Z}_7? 1, 2, 3, 4, 5, 6
- \mathbb{Z}_{12}? 1, 5, 7, 11
- \mathbb{Z}_{20}? 1, 3, 7, 9, 11, 13, 17, 19

Date: February 11, 2008.
(f) \(\mathbb{Z}_{101} \)? \(1, 2, 3, \ldots, 100 \) because 101 is prime.

(2) Factor these numbers into primes in \(\mathbb{Z} \).
(a) \(68 = 2^2 \cdot 17 \)
(b) 113 is prime
(c) \(600 = 2^3 \cdot 3 \cdot 5^2 \)
(d) \(1414 = 2 \cdot 7 \cdot 101 \)

(3) Write as the sum of two squares if possible.
(a) \(13 = 3^2 + 2^2 \)
(b) 15 not possible
(c) \(17 = 4^2 + 1^2 \)
(d) 19 not possible
(e) \(29 = 5^2 + 2^2 \)
(f) 203 not possible
(g) 77 not possible
(h) \(85 = 9^2 + 2^2 = 7^2 + 6^2 \)

(4) Factor these numbers into primes in \(\mathbb{Z}[i] \).
(a) 11 is prime
(b) \(13 = (3 + 2i)(3 - 2i) \)
(c) \(15 = (2 + i)(2 - i) \)
(d) \(17 = (4 + i)(4 - i) \)
(e) \(63 = 3^2 \cdot 7 \)
(f) \(73 = (8 + 3i)(8 - 3i) \)

2. Worksheet 4B Solutions

(1) What are the invertible elements in
(a) \(\mathbb{Z}_{15} \)? \(1, 2, 4, 7, 8, 11, 13, 14 \)
(b) \(\mathbb{Z}_{21} \)? \(1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20 \)
(c) \(\mathbb{Z}_{79} \)? \(1, 2, \ldots, 78 \)

(2) Factor these numbers into primes in \(\mathbb{Z} \).
(a) 73 is prime
(b) \(117 = 3^2 \cdot 13 \)
(c) \(238 = 2 \cdot 7 \cdot 17 \)
(d) \(243 = 3^5 \)

(3) Write as the sum of two squares if possible.
(a) \(53 = 7^2 + 2^2 \)
(b) 57 not possible
(c) 123 not possible
(d) 129 not possible
(e) \(130 = 11^2 + 3^2 = 9^2 + 7^2 \)

(4) Factor these numbers into primes in \(\mathbb{Z}[i] \).
(a) \(37 = (6 + i)(6 - i) \)
(b) \(39 = 3(3 + 2i)(3 - 2i) \)
(c) \(41 = (5 + 4i)(5 - 4i) \)
(d) 43 is prime
(e) \(2 + i \) is prime
(f) \(3 + i = (1 + i)(2 - i) \)
(g) \(3 + 2i \) is prime
(h) \(3 + 4i = (2 + i)^2 \)