(1) Analyze these functions for extreme points, concavity and inflection points.
 (a) \(f(x) = x^3 - 6x \)
 (b) \(g(t) = t^3 - t^2 + t - 1 \)
 (c) \(g(t) = \frac{1}{t} \)
 (d) \(m(x) = 2x + \frac{1}{x} \)
 (e) \(w(x) = x^4 - 2x^2 + x + 1 \)
 (f) \(f(t) = t^2 \ln t \) for \(t > 0 \)
 (g) \(w(s) = s^2 e^s \)

(2) Give bounds on \(f(1.1) \) if
 (a) \(f(1) = 2 \) and \(.1 < f'(x) < .3 \) for all \(x \).
 (b) \(f(1) = 5 \) and \(|f'(x)| \leq 2 \) for all \(x \).

(3) Find the quadratic Taylor polynomial at the given point.
 (a) \(f(x) = e^x \) at \(x_0 = 0 \).
 (b) \(r(x) = \sqrt{x} \) at \(x_0 = 25 \).

(4) Approximate:
 (a) \(\sqrt{e} \)
 (b) \(\sqrt{26} \)