For this worksheet, you will need to know the differentiation rules for sums, products, reciprocals, and quotients. You also need to know that \(\frac{d}{dx} \ln x = \frac{1}{x} \). Try to treat constants as such to simplify the calculations, e.g., \(\frac{5}{x} = 5\left(\frac{1}{x}\right) \).

1. Differentiate the following functions.
 (a) \(f(x) = x^5 \cos x \).
 (b) \(u = (2x + 1)5^x \)
 (c) \(g(s) = s^5 - 2se^s \)
 (d) \(h(t) = \frac{1}{4}t^2 \ln t \).
 (e) \(y = \frac{1}{x^3 + 3x + 1} \)
 (f) \(y = \frac{4}{e^t + 1} \)
 (g) \(w = \frac{x}{x^2 + 2} \)
 (h) \(y = \frac{x \sin x}{2^x + 1} \)

2. Find the tangent line at the indicated point.
 (a) \(y = xe^x - 1 \) at \(x = 0 \)
 (b) \(y = x \ln x \) at \(x = 1 \)

3. Use the rules to derive the formulas for the derivatives of the following functions.
 (a) \(\tan x \)
 (b) \(\sec x \)
 (c) \(\cot x \)
 (d) \(\csc x \)