
Review:

Hamilton path: a path that travels through every vertex of a graph
once and only once.

Hamilton circuit: a circuit that travels through every vertex of a
graph once and only once.

complete graph: there is exactly one edge connecting each pair of
vertices; the complete graph with n vertices is written Kn.

Kn has a total of n(n -1)/2 edges.

factorials: n!=1 x 2 x 3 x ... x n.

Kn has (n-1)! Hamilton circuits.

10!= 3628800
20!= 2432902008176640000
30!= 265252859812191058636308480000000
40!= 815915283247897734345611269596115894272000000000
Notice how quickly these numbers become huge!

Traveling-salesman problems.

We have a weighted complete graph: each edge has a number
called the weight attached to it. Each path has a total weight, the
sum of the weights of the edges in the path.

So the “traveling-salesman problem”, TSP for short, is to find the
Hamilton circuit with the smallest total weight.

1

The brute-force algorithm:
1. list all Hamilton circuits.
2. calculate the total weight of each one.
3. choose the one which has least total weight.

The nearest-neighbor algorithm:
1. Choose any starting vertex.
2. Whenever you reach any vertex, look at the weights of all

the edges that lead to vertices you haven’t visited yet.
Choose the one of least weight.

3. Once you’ve reached the last vertex, go back to the
starting point.

Advantages and disadvantages of the algorithms

The brute-force algorithm is optimal: it gives the best possible
answer. The nearest-neighbor algorithm is approximate: it gives
an answer that is usually pretty good, but is not always the best
possible.

The brute-force algorithm is inefficient: as the number of vertices
increases, the amount of work we have to do to find the answer
increases very rapidly (on the order of n!). The nearest-neighbor
algorithm is efficient: the amount of work we have to do to find
the answer increases, but not very rapidly (on the order of n^2—
any polynomial rate of increase is considered efficient).

There are other optimal algorithms (which we won’t learn), and
there are other efficient algorithms (one or two of which we will
learn), but no one has yet found an algorithm which is both optimal
and efficient. Most experts think it can’t be done. It is closely
related to a famous problem (the P=NP problem) which has a
million dollar reward for its solution (see the Millenium Prizes
offered by the Clay Foundation at www.claymath.org).

2

http://www.claymath.org/)

Section 7. The repetitive nearest-neighbor algorithm.

The nearest-neighbor algorithm depends on what vertex you
choose to start from. The repetitive nearest-neighbor algorithm
says to try each vertex as starting point, and then choose the best
answer.

Example.

A garbage truck must pick up garbage at four different dump sites
(A, B, C, and D) as shown in the graph below, starting and ending
at A. The numbers on the edges represent distances (in miles)
between locations. The truck driver wants to minimize the total
length of the trip.

Start at A: A, B, D, C, A has total length 4+2+10+14=30.

Start at B: B, D, A, C, B has total length 2+6+14+3=25.

Start at C: C, B, D, A, C has total length 3+2+6+14=25.

Start at D: D, B, C, A, D has total length 2+3+14+6=25.

So we can choose any of the solutions which have total length 25
(they all are the same Hamilton circuit, except they have different
starting points, and some are mirror-images). You can rewrite the
Hamilton circuit to start and end at A if you wish: A, C, B, D, A
(or its mirror image A, D, B, C, A).

Note that the Hamilton circuit A, B, C, D, A has total length
4+3+10+6=23. The brute-force algorithm gives this answer.

3

Section 7. The cheapest link algorithm.

In this method we don't choose a starting vertex.

Instead we choose the “cheapest link” = the edge of smallest
weight in the graph.

Then we chooses the edge of second smallest weight .(this edge
doesn't need to share a vertex with the previous edge).

We keep doing this, except we reject any edges which either:
1) form a “short circuit” (a circuit which is not a Hamilton

circuit”, or
2) result in 3 of our edges meeting at the same vertex.

Once we have chosen in this way n-1 edges, the edges will form a
Hamilton path.

Then for our last edge we choose the one joining the two
endpoints.

Consider the previous example:

Edges increasing order of weight: BD, BC, BA(but we reject this
edge: it results in 3 edges meeting at B), AD; we have 3 edges so
we have a Hamilton path: ADBC; we complete it to a Hamilton
circuit: ADBCA, which has total weight 25, not best possible but
as good as the last method.

This method is approximate and efficient.

4

	Review:
	Advantages and disadvantages of the algorithms
	Section 7. The repetitive nearest-neighbor algorithm.
	Section 7. The cheapest link algorithm.

