2. (a) \[\begin{array}{c}
1 \quad 2 \\
2 \quad 4 \\
2 \quad 3 \\
2 \quad 1
\end{array} \]
(b) \[\begin{array}{c}
1 \quad 2 \\
2 \quad 3 \\
1 \quad 2
\end{array} \]
(c) \(\chi(G) = 3 \) since there is a 3-coloring, and at least 3 are needed since graph contains \(K_3 \).

4. (a) \[\begin{array}{c}
1 \quad 2 \\
3 \quad 4 \\
2 \quad 3 \\
1 \quad 4
\end{array} \]
(b) \(\chi(G) = 4 \). There is a 4-coloring, and there is no 3-coloring since graph contains \(K_4 \).

8. If any vertices are not isolated, then some vertices are adjacent to others. Any pair of adjacent vertices requires at least two colors.

10. If \(n \) is even, the outer circuit \((C_n) \) requires 2 colors, so a third is needed for the "hub". So \(\chi(W_n) = 3 \) if \(n \) is even. Likewise if \(n \) is odd, \(\chi(C_n) = 3 \), so a fourth color is needed for the hub, so \(\chi(W_n) = 4 \) if \(n \) is odd.
18. (a) If every vertex is degree 3, then every vertex is odd. We know from before that a graph has an even number of odd vertices.

 n must be at least 4, since it is even (from (a)), and it is non-negative, so it is 0 or 2. If there are zero or two vertices, we can't have any vertices of degree 3, and all vertices are of degree 3. So n is an even number— that is not 0 or 2, so it is 4 or greater.

 (b) From Brooks' Theorem, \(\chi(G) \leq \max \text{ degree} + 1 \). Max degree is 3, so \(\chi(G) \leq 3 + 1 = 4 \).

 (c) \(K_4 \) fails

22. (a) Every vertex is adjacent to 8 others in the same box, 8 others in the same row, and 8 others in the same column. However, some are counted twice here—there are 4 vertices in the same box that are also in the same row/column. So only count those once, overall there are 20 neighbors.

 (b) \(\# \text{ edges} = \frac{\text{degree sum of } G}{2} \). There are 81 vertices, each has degree 20. So degree sum is 1620. \(\frac{1620}{2} = 810 = \# \text{ edges} \).