Numerical Problems
1. Find all x in \mathbb{Z}_{12} which solve the equation $8x = 4$ in \mathbb{Z}_{12}. Find all x in \mathbb{Z}_{55} which solve the equation $15x = 35$ in \mathbb{Z}_{55}. Find all x in \mathbb{Z}_{531} which solve the equation $186x = 221$ in \mathbb{Z}_{531}.

2. ⊛ $U_8 = \{1, 3, 5, 7\}$. What set do we get, mod 8, when we multiply each element of U_8 by 3? By 5? By 7? $U_9 = \{1, 2, 4, 5, 7, 8\}$. What set do we get, mod 9, when we multiply each element of U_9 by 2? By 4? By 5? By 7? By 8? Do the same for U_{10} and U_{11}. Any conjectures?

3. Does $3 + i$ divide $-1 + 7i$? Does $3 + 5i$ divide $21 + i$? Justify. Describe all of the “integral” multiples $(1+2i)a$ of $1+2i$. Here a runs through all the Gaussian integers. Plot these “integral” multiples in the plane.

4. Calculate $\varphi(21)$, $\varphi(33)$, $\varphi(35)$, $\varphi(39)$, $\varphi(51)$, $\varphi(55)$, $\varphi(65)$, and $\varphi(77)$. Any conjectures? Hint: for each m, prime factor both m and $\varphi(m)$.

Exploration
5. ⊛ Under what conditions on a, b, c does the equation $ax + by = c$ in \mathbb{Z} have a solution? Do enough examples until you can formulate a precise statement. You do not need to prove your statement (yet).

Prove or Disprove and Salvage if Possible (PODASIP)
6. ⊛ If $a|c$ and $b|c$ then $ab|c$.

7. ⊛ The only units in \mathbb{Z} are ± 1.

8. The product of three consecutive integers is divisible by 6.

9. Let a and n be positive integers > 1. If $a^n - 1$ is prime then $a = 2$ and n is prime.

For Fun
10. Consider a rectangular Cartesian coordinate system in a plane. Points with integral coordinates we call lattice points. Show that no triangle whose vertices are all lattice points can be an equilateral triangle.