Name:
Question 1
In this question, just write your answers, without proofs. Exercise 14 on p. 342 may be helpful.
a) Let p be a fixed prime integer, and let R be the set of all rational numbers that can be written in a form a/b
with b not divisible by p. Note that $R \supset \mathbb{Z}$, because $n = n/1$ for every integer n. One can easily prove (I do not
require that) that R is a PID (the addition and multiplication operations are just usual addition and multiplication
of rational numbers).
a.1) Describe all units in R .
Answer

a.2) Describe all maximal ideals in R. Answer

- b) Let p be a fixed prime integer, and let R be the set of all rational numbers that can be written in a form a/b with $b=p^k$ for a non-negative integer k. Note that $R\supset \mathbb{Z}$, because n=n/1 for every integer n. One can easily prove (I do not require that) that R is a PID (the addition and multiplication operations are just usual addition and multiplication of rational numbers).
 - **b.1)** Describe all units in R.

Answer

b.2) Describe all maximal ideals in R. Answer

$Question\ 2$

Let R be a Euclidean domain and let u be a unit in R. We denote by δ the corresponding function. Is it true that $\delta(b) = \delta(ub)$ for every non-zero $b \in R$? Prove your answer.

Answer Yes No (Please circle).

Proof

$Question\ 3$

Let $d \in \mathbb{Z}$ be a square-free integer (that is $d \neq 1$, and d has no integer factors of the form c^2 except $c = \pm 1$, cf. p. 346). Let $R = \mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}$. Our ultimate target in this problem is to prove that every prime ideal $P \subset R$ is a maximal ideal. I provide steps below.

- a) We firstly prove that every ideal $I \subset R$ is finitely generated. We actually prove a stronger statement that every ideal is generated by at most two elements. The steps provided below are very similar to those of Exercise 32, p. 344, which may be helpful.
 - **a.1)** Prove that if I is non-zero, then $I \cap \mathbb{Z}$ is a non-zero ideal in \mathbb{Z} .

a.2) Derive that there exists a positive integer $x \in \mathbb{Z}$ such that

a.3) Le	et J be the set	of all integers b	such that $a + b$	$\sqrt{d} \in I$ for so	me $a \in \mathbb{Z}$ (tha	at is there exist	s $a \in \mathbb{Z}$ such	that
$a + b\sqrt{d} \in$	I). Prove that	there exists a p	ositive integer y	such that				

$$J = \{yt \mid t \in \mathbb{Z}\}$$

- **a.4)** Explain why there exists $s \in \mathbb{Z}$ such that $s + y\sqrt{d} \in I$.
- **a.5)** Prove that $I = \{Ax + B(s + y\sqrt{d}) \mid A, B \in \mathbb{Z}\}$. (That implies that $I = (x, s + y\sqrt{d})$ in p.145 notations for finitely generated ideals, but we will not need this fact.)

b) Derive from the statements $a.1 - a.5$ that the factor ring R/P is a finite ring without zero divisors. b.1) Explain why the factor ring R/P has no zero divisors.					
b.2) Prove that the factor ring R/P is finite.					
c) Derive from $b.1$ and $b.2$ that R/P is a field.					
d) Derive from $a)-d$) that every prime ideal $P \subset R$ is a maximal ideal.					

Let $d \ge 6$ be a square free integer (that is $d \ne 1$, and d has no integer factors of the form c^2 except $c = \pm 1$, cf. p. 346). We want to show that the ring

$$R = \mathbb{Z}[\sqrt{-d}] = \{a + b\sqrt{-d} \mid a, b \in \mathbb{Z}\}\$$

is not a Euclidean domain.

We assume, for the sake of contradiction, that R is a Euclidean domain, and denote by δ the corresponding function (see Definition on p. 324 for its properties).

a) Prove that $\delta(z) > 0$ (that is $\delta(z) \neq 0$) if $z \in R$ is not a unit.

b) Prove that there exists a non-unit element $x \in R$ such that $\delta(x) \leq \delta(z)$ for every non-unit element $z \in R$.

c) Show that a remainder from the division by x is either 0 or a unit in R.

Hint. Make use of Theorem 10.20.
e) Derive from d) that for every $w \in R$ at least one of the three elements $w, w+1$, and $w-1$ must b divisible by x in R .
f) Consider division with remainder of $\sqrt{-d}$ by 2 and make use of c) and d) to show that $x \neq 2$. A versimilar argument also shows that $x \neq 3$. You may use this fact further and do not need to write the prochere.
g) Make use of the condition $d \geq 6$ in order to show that one can pick $w \in \mathbb{Z} \subset R$ such that no one of the elements $w, w+1$, and $w-1$ is divisible by x in R . Hint. Make use of Theorem 10.19. The contradiction between the assertions e) and g) finishes the proof.

d) Describe all units in R.