Generalities

This page contains a collection of very simple hints on TeX/LaTeX, and intended primarily to help students in my writing-intensive classes.
For a more comprehensive description of the MathJax dialect which is made use of, this link may be helpful.

The delimiters to make use of are $$ ... $$ (or, alternatively, \[ ... \]) for displayed formulas. For example, $$\sum_{i=0}^n i^2 = \frac{n^2+n}{2}\tag{displayed}$$

displays as $$\sum_{i=0}^n i^2 = \frac{n^2+n}{2}\tag{displayed}.$$
Inline mathmetics should be always enclosed into $ ... $. Note the difference between a (indefinite article) and $a$ (a quantity denoted by the letter).

How do I type this thing?



If the table below does not suffice, it is highly recommended to use this service.







Formula How to type it in Remarks
$$ \frac{a}{b} $$ $$ \frac{a}{b} $$ fraction
$$ a b c $$ $$ a b c $$ product of $a$, $b$, and $c$ the blank spaces inside delimiters do not matter
$$ \mathbb{N}, \ \mathbb{Z}, \ \mathbb{Q}, \ \mathbb{R}, \ \mathbb{C} $$ $$ \mathbb{N}, \ \mathbb{Z}, \ \mathbb{Q}, \ \mathbb{R}, \ \mathbb{C} $$ standard notations for positive integers, integers, rational, real, and complex numbers accordingly; backslash followed by a blank space yields a blank in the formula
$$ \forall, \exists, \lor, \land, \neg, \Leftarrow, \Rightarrow $$ $$ \forall, \exists, \lor, \land, \neg, \Leftarrow, \Rightarrow $$ quantifiers and lofical symbols
$$ a_i, \ \ b^j, \ \ \left( \frac{u}{v} \right)^k $$ $$ a_i, \ \ b^j, \ \ \left( \frac{u}{v} \right)^k $$ indexes and powers; in order to produce $$\left( \frac{u}{v} \right)^k \ \text{instead of merely} \ ( \frac{u}{v} )^k,$$ the rescaling \left( ... \right) instead simple parenthesis are used
$$ \sum_{i=0}^n a_i = a_0 + \ldots + a_n; \ \ \ \prod_{j=0}^m b_j = b_1 \cdot \ldots \cdot b_m $$ $$ \sum_{i=0}^n a_i = a_0 + \ldots + a_n; \ \ \ \prod_{j=0}^m b_j = b_1 \cdot \ldots \cdot b_m $$ sums and products; note the usage of curly braces for the correct display of indeces
$$ \pm\sqrt{a^2+b^2}, \ \ \ \sqrt[7]{a^2+b^2} $$ $$ \pm\sqrt{a^2+b^2}, \ \ \ \sqrt[7]{a^2+b^2} $$ square root, seventh root, plus-minus
$$ \alpha,\beta, \gamma, \delta, \Delta, \ldots, \psi, \xi, \epsilon, \varepsilon, \omega, \Omega $$ $$ \alpha,\beta, \gamma, \delta, \Delta, \ldots, \psi, \xi, \epsilon, \varepsilon, \omega, \Omega $$ some Greek letters
$$ \left( \begin{array}{cccc} a_{1,1} & a_{1,2} & \ldots & a_{1,n} \\ & & \ldots & \\ & & \ldots & \\ & & \ldots & \\ a_{m,1} & a_{m,2} & \ldots & a_{m,n} \end{array}\right) $$ $$ \left( \begin{array}{cccc} a_{1,1} & a_{1,2} & \ldots & a_{1,n} \\ & & \ldots & \\ & & \ldots & \\ & & \ldots & \\ a_{m,1} & a_{m,2} & \ldots & a_{m,n} \end{array}\right) $$ a matrix