Counting the relations compatible with an algebra

Brian Davey and Jane Pitkethly
(La Trobe, Australia)

AMS Hawaii, 4 March 2012
Four finiteness conditions

Proof-by-picture: An easy example

Proof-by-picture: Two general conditions for ‘infiniteness’

A family of ‘finite’ examples
A compatible relation on a finite algebra \mathbf{A} is a non-empty subuniverse of \mathbf{A}^n, for some $n \in \mathbb{N}$.

There are several natural finiteness conditions on \mathbf{A} that are based on ‘how many’ compatible relations it has.
A weak finiteness condition

Condition (1): A is finitely related

There is a finite set of compatible relations on A from which all other compatible relations on A can be defined, via primitive positive formulæ.
A weak finiteness condition

Condition (1): \(A \) is finitely related
There is a finite set of compatible relations on \(A \) from which all other compatible relations on \(A \) can be defined, via primitive positive formulæ.

▶ Equivalent: Clo(\(A \)) is determined by a finite set of relations.
A weak finiteness condition

Condition (1): **A** is finitely related
There is a finite set of compatible relations on **A** from which all other compatible relations on **A** can be defined, via primitive positive formulæ.

- Equivalent: Clo(**A**) is determined by a finite set of relations.
- All finite lattices,¹ groups,² semilattices and unary algebras are finitely related.

¹Bergman
²Aichinger, Mayr, McKenzie
A weak finiteness condition

Condition (1): A is finitely related

There is a finite set of compatible relations on A from which all other compatible relations on A can be defined, via primitive positive formulæ.

- Equivalent: $\text{Clo}(A)$ is determined by a finite set of relations.
- All finite lattices,\(^1\) groups,\(^2\) semilattices and unary algebras are finitely related.
- Every finite commutative semigroup is finitely related,\(^3\) but not every finite semigroup.\(^4\)

\(^1\)Bergman
\(^2\)Aichinger, Mayr, McKenzie
\(^3\)Davey, Jackson, Pitkethly, Szabo
\(^4\)Mayr
A weak finiteness condition

Condition (1): \(A \) is finitely related

There is a finite set of compatible relations on \(A \) from which all other compatible relations on \(A \) can be defined, via primitive positive formulæ.

- Equivalent: \(\text{Clo}(A) \) is determined by a finite set of relations.
- All finite lattices,\(^1\) groups,\(^2\) semilattices and unary algebras are finitely related.
- Every finite commutative semigroup is finitely related,\(^3\) but not every finite semigroup.\(^4\)
- The finite relatedness of \(A \) only depends on \(\text{Var}(A) \).\(^3\)

\(^1\)Bergman
\(^2\)Aichinger, Mayr, McKenzie
\(^3\)Davey, Jackson, Pitkethly, Szabo
\(^4\)Mayr
A stronger finiteness condition

Condition (2): A has few subpowers
The logarithm of the number of n-ary compatible relations on A grows polynomially in n.

▶ Equivalent to A having an edge term.

All finite lattices and groups have few subpowers, but not semilattices or unary algebras.

⇒: Few subpowers implies finitely related.
A stronger finiteness condition

Condition (2): A has few subpowers

The logarithm of the number of n-ary compatible relations on A grows polynomially in n.

- Equivalent to A having an edge term.\(^5\)

\(^5\)Berman, Idziak, Marković, McKenzie, Valeriote, Willard
A stronger finiteness condition

Condition (2): A has few subpowers

The logarithm of the number of n-ary compatible relations on A grows polynomially in n.

- Equivalent to A having an edge term.\(^5\)

- All finite lattices and groups have few subpowers, but not semilattices or unary algebras.

\(^5\)Berman, Idziak, Marković, McKenzie, Valeriote, Willard
A stronger finiteness condition

Condition (2): \(A \) has few subpowers
The logarithm of the number of \(n \)-ary compatible relations on \(A \) grows polynomially in \(n \).

- Equivalent to \(A \) having an edge term.\(^5\)

- All finite lattices and groups have few subpowers, but not semilattices or unary algebras.

- (2) \(\Rightarrow \) (1): Few subpowers implies finitely related.\(^6\)

\(^5\)Berman, Idziak, Marković, McKenzie, Valeriote, Willard
\(^6\)Aichinger, Mayr, McKenzie
An even stronger finiteness condition

Condition (3): Baker–Pixley

There is a finite set of compatible relations on A from which all other compatible relations on A can be defined, via conjunctions of atomic formulæ.
An even stronger finiteness condition

Condition (3): Baker–Pixley
There is a finite set of compatible relations on A from which all other compatible relations on A can be defined, via conjunctions of atomic formulæ.

▶ Equivalent to A having a near-unanimity term.
An even stronger finiteness condition

Condition (3): Baker–Pixley

There is a finite set of compatible relations on A from which all other compatible relations on A can be defined, via conjunctions of atomic formulæ.

- Equivalent to A having a near-unanimity term.
- All finite lattices satisfy Baker–Pixley. But not groups, semilattices or unary algebras.
An even stronger finiteness condition

Condition (3): Baker–Pixley

There is a finite set of compatible relations on A from which all other compatible relations on A can be defined, via conjunctions of atomic formulæ.

- Equivalent to A having a near-unanimity term.
- All finite lattices satisfy Baker–Pixley. But not groups, semilattices or unary algebras.
- $(3) \Rightarrow (2)$: Baker–Pixley implies few subpowers.
An even stronger finiteness condition

Condition (3): Baker–Pixley
There is a finite set of compatible relations on A from which all other compatible relations on A can be defined, via conjunctions of atomic formulæ.

- Equivalent to A having a near-unanimity term.
- All finite lattices satisfy Baker–Pixley. But not groups, semilattices or unary algebras.
- $(3) \Rightarrow (2)$: Baker–Pixley implies few subpowers.

Condition (4): Finitely many relations
There is a finite set of compatible relations on A such that every other compatible relation on A is interdefinable with one of these relations, via conjunctions of atomic formulæ.
An example

Two compatible relations on the 2-element bounded lattice $L = \langle \{0, 1\}; \lor, \land, 0, 1 \rangle$:

$\leq \subseteq L^2$

$\rho \subseteq L^4$

The relations \leq and ρ are conjunct-atomic interdefinable, and so we will regard them as equivalent.

Every compatible relation on L is equivalent to either \leq or Δ_L.
An example

Two compatible relations on the 2-element bounded lattice \(L = \langle \{0, 1\}; \lor, \land, 0, 1 \rangle \):

\[
\leq \subseteq L^2
\]

\[
\leq = \{ (x, y) \in L^2 \mid (x, x, y, y) \in \rho \}
\]
An example

Two compatible relations on the 2-element bounded lattice \(L = \langle \{0, 1\}; \lor, \land, 0, 1 \rangle \):

\[
\leq \subseteq L^2
\]

\[
\rho \subseteq L^4
\]

\[
\leq = \{ (x, y) \in L^2 \mid (x, x, y, y) \in \rho \}
\]

\[
\rho = \{ (w, x, y, z) \in L^4 \mid w \leq x \land w \leq y \land y = z \}
\]
An example

Two compatible relations on the 2-element bounded lattice $L = \langle \{0, 1\}; \lor, \land, 0, 1 \rangle$:

$$\leq \subseteq L^2$$

$$\rho \subseteq L^4$$

$$\leq = \{ (x, y) \in L^2 \mid (x, x, y, y) \in \rho \}$$

$$\rho = \{ (w, x, y, z) \in L^4 \mid w \leq x \& w \leq y \& y = z \}.$$
An example

Two compatible relations on the 2-element bounded lattice $L = \langle \{0, 1\}; \lor, \land, 0, 1 \rangle$:

\[
\leq \subseteq L^2
\]

\[
\rho \subseteq L^4
\]

\[
\leq = \{(x, y) \in L^2 \mid (x, x, y, y) \in \rho\}
\]

\[
\rho = \{(w, x, y, z) \in L^4 \mid w \leq x \land w \leq y \land y = z\}.
\]
An example

Two compatible relations on the 2-element bounded lattice $L = \langle \{0, 1\}; \lor, \land, 0, 1 \rangle$:

$\leq \subseteq L^2$

$\rho \subseteq L^4$

$\leq = \{ (x, y) \in L^2 \mid (x, x, y, y) \in \rho \}$

$\rho = \{ (w, x, y, z) \in L^4 \mid w \leq x \& w \leq y \& y = z \}.$

The relations \leq and ρ are conjunct-atomic interdefinable, and so we will regard them as equivalent.
An example

Two compatible relations on the 2-element bounded lattice \(L = \langle \{0, 1\}; \lor, \land, 0, 1 \rangle\):

\[
\leq \subseteq L^2
\]

\[
\begin{array}{c}
00 \\
01 \\
11
\end{array}
\]

\[
\rho \subseteq L^4
\]

\[
\begin{array}{c}
0000 \\
0100 \\
0111 \\
1111
\end{array}
\]

\[
\leq = \{ (x, y) \in L^2 \mid (x, x, y, y) \in \rho \}
\]

\[
\rho = \{ (w, x, y, z) \in L^4 \mid w \leq x \& w \leq y \& y = z \}
\]

The relations \(\leq\) and \(\rho\) are conjunct-atomic interdefinable, and so we will regard them as equivalent.

Every compatible relation on \(L\) is equivalent to either \(\leq\) or \(\Delta_L\).
Basic definitions

Two compatible relations on A are equivalent if each is conjunct-definable from the other.

If the set of all compatible relations on A has only a finite number of equivalence classes, then we say that A admits only finitely many relations.
Basic definitions

Two compatible relations on A are equivalent if each is conjunct-definable from the other.

If the set of all compatible relations on A has only a finite number of equivalence classes, then we say that A admits only finitely many relations.

In this case, the algebra A satisfies the Baker–Pixley condition and so A has a near-unanimity term.
Basic definitions

Two compatible relations on \(A \) are equivalent if each is conjunct-definable from the other.

If the set of all compatible relations on \(A \) has only a finite number of equivalence classes, then we say that \(A \) admits only finitely many relations.

In this case, the algebra \(A \) satisfies the Baker–Pixley condition and so \(A \) has a near-unanimity term.

Question
Which finite algebras admit only finitely many relations?
Examples

2-element Boolean algebra $\mathbb{B} = \langle \{0, 1\}; \land, \neg \rangle$

One compatible relation: Δ_B.

Examples

2-element Boolean algebra $\mathbf{B} = \langle \{0, 1\}; \land, \neg \rangle$
One compatible relation: Δ_B.

2-element bounded lattice $\mathbf{L} = \langle \{0, 1\}; \lor, \land, 0, 1 \rangle$
Two compatible relations: Δ_L, \leq.
Examples

2-element Boolean algebra $\mathbf{B} = \langle \{0, 1\}; \land, \neg \rangle$
One compatible relation: Δ_B.

2-element bounded lattice $\mathbf{L} = \langle \{0, 1\}; \lor, \land, 0, 1 \rangle$
Two compatible relations: Δ_L, \leq.

2-element lattice $\mathbf{2} = \langle \{0, 1\}; \lor, \land \rangle$
Eight compatible relations: $\Delta_2, \leq, \{0\}, \{1\}, \{(0, 1)\}$,
$\leq \times \{0\}, \leq \times \{1\}, \leq \times \{(0, 1)\}$.
More examples

Finitely many relations:
- 3-element p-algebra $S = \langle \{0, d, 1\}; \lor, \land, *, 0, 1 \rangle$,
- 4-element Boolean algebra with constants,
- ring with unity \mathbb{Z}_{pq}, for distinct primes p, q,
- every quasi-primal algebra (with R. Willard),
- each finite Heyting chain (Nguyen, Pitkethly).

Infinitely many relations:
- Boolean algebras of size ≥ 4, lattices of size ≥ 3,
- p-algebras of size ≥ 4, non-chain Heyting algebras, . . .
More examples

Finitely many relations:

- 3-element p-algebra $S = \langle \{0, d, 1\}; \lor, \land, \ast, 0, 1 \rangle$,
- 4-element Boolean algebra with constants,
- ring with unity \mathbb{Z}_{pq}, for distinct primes p, q,
- every quasi-primal algebra (with R. Willard),
- each finite Heyting chain (Nguyen, Pitkethly).

Infinitely many relations:

- Boolean algebras of size ≥ 4, lattices of size ≥ 3, p-algebras of size ≥ 4, non-chain Heyting algebras, ...
More examples

Finitely many relations:

- 3-element p-algebra $S = \langle \{0, d, 1\}; \lor, \land, *, 0, 1 \rangle$,
- 4-element Boolean algebra with constants,
- ring with unity \mathbb{Z}_{pq}, for distinct primes p, q,
- every quasi-primal algebra (with R. Willard),
- each finite Heyting chain (Nguyen, Pitkethly).

Infinitely many relations:

- Boolean algebras of size ≥ 4, lattices of size ≥ 3, p-algebras of size ≥ 4, non-chain Heyting algebras, . . .

(If A admits infinitely many relations and $A \in \text{HS}(B)$, then B admits infinitely many relations.)
Proof-by-picture: An easy example

Consider the 2-element algebra $\mathbf{M} = \langle \{0, 1\}; m \rangle$, where $m: \{0, 1\}^3 \rightarrow \{0, 1\}$ is the majority operation.
Proof-by-picture: An easy example

Consider the 2-element algebra $M = \langle \{0, 1\}; m \rangle$, where $m: \{0, 1\}^3 \rightarrow \{0, 1\}$ is the majority operation.

This picture proves that M admits infinitely many relations:
Easy example: Steps 1 and 2

Step 1

The relation \(r := \{(0, 0), (0, 1), (1, 0)\} \) is compatible with \(M \).
Easy example: Steps 1 and 2

Step 1

The relation \(r \) defined by \((0, 0), (0, 1), (1, 0)\) is compatible with \(M \).

Define \(M = \langle \{0, 1\}; r \rangle \).
Easy example: Steps 1 and 2

Step 1
The relation \(r := \{(0, 0), (0, 1), (1, 0)\} \) is compatible with \(\mathbb{M} \).

Define \(\mathbb{M} = \langle \{0, 1\}; r \rangle \).

Step 2
Each structure \(\mathbb{X}_n \) defines a compatible relation on \(\mathbb{M} \):

\[
r_n := \text{hom}(\mathbb{X}_n, \mathbb{M}) \leq \mathbb{M}^{\mathbb{X}_n}.
\]
Easy example: Steps 1 and 2

Step 1
The relation \(r := \{(0, 0), (0, 1), (1, 0)\} \) is compatible with \(M \).

Define \(M = \langle \{0, 1\}; r \rangle \).

Step 2
Each structure \(X_n \) defines a compatible relation on \(M \):

\[r_n := \text{hom}(X_n, M) \leq M^{X_n}. \]

For example,

\[r_3 = \text{hom}(X_3, M) \]
Easy example: Steps 1 and 2

Step 1
The relation \(r := \{(0, 0), (0, 1), (1, 0)\} \) is compatible with \(M \).

Define \(M = \langle \{0, 1\}; r \rangle. \)

Step 2
Each structure \(X_n \) defines a compatible relation on \(M \):

\[
 r_n := \text{hom}(X_n, M) \leq M^{X_n}.
\]

For example,

\[
 r_3 = \text{hom}(X_3, M) = \{(0, 0, 0), \ldots\}.
\]
Easy example: Steps 1 and 2

Step 1
The relation \(r := \{(0, 0), (0, 1), (1, 0)\} \) is compatible with \(\mathbb{M} \).

Define \(\mathbb{M} = \langle \{0, 1\}; r \rangle \).

Step 2
Each structure \(X_n \) defines a compatible relation on \(\mathbb{M} \):

\[r_n := \text{hom}(X_n, \mathbb{M}) \leq \mathbb{M}^{X_n}. \]

For example,

\[r_3 = \text{hom}(X_3, \mathbb{M}) = \{(0, 0, 0), (0, 0, 1)\}. \]
Easy example: Steps 1 and 2

Step 1

The relation $r := \{(0, 0), (0, 1), (1, 0)\}$ is compatible with M.

Define $M = \langle \{0, 1\}; r \rangle$.

Step 2

Each structure X_n defines a compatible relation on M:

$$r_n := \text{hom}(X_n, M) \subseteq M^{X_n}.$$

For example,

$$r_3 = \text{hom}(X_3, M) = \{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)\}.$$
Easy example: Step 3

We want to show that the relations r_2, r_3, r_4, \ldots are pairwise non-equivalent.

$r_2 = \text{hom}(X_2, M)$ $r_3 = \text{hom}(X_3, M)$ $r_4 = \text{hom}(X_4, M)$
Easy example: Step 3

\[r_2 = \text{hom}(X_2, M) \quad r_3 = \text{hom}(X_3, M) \quad r_4 = \text{hom}(X_4, M) \]

- We want to show that the relations \(r_2, r_3, r_4, \ldots \) are pairwise non-equivalent.
- We will just check that \(r_3 \) is not ca-definable from \(r_4 \).
Easy example: Step 3

\[r_2 = \text{hom}(X_2, M) \quad r_3 = \text{hom}(X_3, M) \quad r_4 = \text{hom}(X_4, M) \]

- We want to show that the relations \(r_2, r_3, r_4, \ldots \) are pairwise non-equivalent.
- We will just check that \(r_3 \) is not ca-definable from \(r_4 \).
- It suffices to find a map \(\varphi : Z \to \{0, 1\} \), for some \(Z \subseteq \{0, 1\}^n \), such that \(\varphi \) preserves \(r_4 \) but not \(r_3 \).
Step 3: Choosing $\varphi: Z \to \{0, 1\}$

We want φ to preserve r_4 but not r_3.
Step 3: Choosing $\varphi: Z \rightarrow \{0, 1\}$

We want φ to preserve r_4 but not r_3.

There’s always a canonical choice for $\text{dom}(\varphi)$:
Step 3: Choosing \(\varphi : \mathbb{Z} \rightarrow \{0, 1\} \)

We want \(\varphi \) to preserve \(r_4 \) but not \(r_3 \).

There’s always a canonical choice for \(\text{dom}(\varphi) \):

\[
\begin{align*}
r_3 &= \text{hom}(X_3, M) \\
&= \{(0, 0, 0), \\
&(0, 0, 1), \\
&(0, 1, 0), \\
&(1, 0, 0)\},
\end{align*}
\]
Step 3: Choosing $\varphi : Z \rightarrow \{0, 1\}$

We want φ to preserve r_4 but not r_3.

There’s always a canonical choice for $\text{dom}(\varphi)$:

$$r_3 = \text{hom}(X_3, M) = \{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)\}$$

$$Z = r_3^T = \{(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0)\}$$
Step 3: Choosing $\varphi : \mathbb{Z} \rightarrow \{0, 1\}$

We want φ to preserve r_4 but not r_3.

There’s always a canonical choice for $\text{dom}(\varphi)$:

\[
\begin{align*}
 r_3 &= \text{hom}(X_3, M) \\
 &= \{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)\}, \\
 Z &= r_3^T = \{(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0)\} \\
 &\quad \mapsto 1 \\
 \varphi (r_3) &= r_3 \\
 \varphi (r_3) &= r_3 \\
 \varphi (r_3) &= r_3 \\
 \varphi (r_3) &= r_3
\end{align*}
\]
Step 3: Choosing $\varphi: Z \rightarrow \{0, 1\}$

We want φ to preserve r_4 but not r_3.

There’s always a canonical choice for $\text{dom}(\varphi)$:

$$r_3 = \text{hom}(X_3, M) = \{ (0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0) \},$$

$$Z = r_3^T = \{ (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0) \} \mapsto 1,$$

So φ doesn’t preserve r_3.
Step 3: Choosing $\varphi : Z \to \{0, 1\}$

We want φ to preserve r_4 but not r_3.

There’s always a canonical choice for $\text{dom}(\varphi)$:

$$r_3 = \text{hom}(X_3, M)$$

$$= \{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)\}$$

$$Z = r_3^T = \{(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0)\}$$

So φ doesn’t preserve r_3.

From the picture

- In fact, we have $X_3 \in \text{ISP}(M)$. Therefore $X_3 \cong Z \leq M^4$.
Step 3: Choosing $\varphi: \mathbb{Z} \rightarrow \{0, 1\}$

We want φ to preserve r_4 but not r_3.

There’s always a canonical choice for $\text{dom}(\varphi)$:

$$r_3 = \text{hom}(X_3, \mathcal{M})$$

$$Z = r_3^T = \{(0, 0, 0, 1), \quad \varphi \mapsto 1\}$$

$$\quad \{(0, 0, 1, 0), \quad \mapsto 1\}$$

$$\quad \{(0, 1, 0, 0)\} \rightarrow 1$$

$$\quad \{(1, 0, 0)\}\rightarrow$$

So φ doesn’t preserve r_3.

From the picture

- In fact, we have $X_3 \in \text{ISP}(\mathcal{M})$. Therefore $X_3 \cong Z \leq \mathcal{M}^4$.
- The map $\varphi: X_3 \rightarrow \{0, 1\}$ does not preserve r_3, because it is not a graph homomorphism, i.e., $\varphi \notin \text{hom}(X_3, \mathcal{M})$.

\[\begin{array}{c}
X_3 \\
\end{array} \xrightarrow{\varphi} \begin{array}{c}
\quad \\
\mathcal{M} \\
0 \quad 1 \quad \end{array}\]
Step 3: Checking $\varphi : \mathbb{Z} \rightarrow \{0, 1\}$ preserves r_4

$r_4 = \text{hom}(X_4, M) \subseteq \{0, 1\}^4$

![Diagram](image)
Step 3: Checking $\varphi : Z \to \{0, 1\}$ preserves r_4

$r_4 = \text{hom}(X_4, M) \subseteq \{0, 1\}^4$

Pick $w, x, y, z \in Z$. For example, $w = (0, 0, 0, 1) \xrightarrow{\varphi} 1$

$x = (0, 0, 1, 0) \xrightarrow{\varphi} 1$

$y = (0, 1, 0, 0) \xrightarrow{\varphi} 1$

$z = (0, 0, 1, 0) \xrightarrow{\varphi} 1$
Step 3: Checking $\varphi : \mathbb{Z} \rightarrow \{0, 1\}$ preserves r_4

$r_4 = \text{hom}(X_4, M) \subseteq \{0, 1\}^4$

Pick $w, x, y, z \in \mathbb{Z}$. For example, $w = (0, 0, 0, 1) \xrightarrow{\varphi} 1$

$x = (0, 0, 1, 0) \xrightarrow{} 1$

$y = (0, 1, 0, 0) \xrightarrow{} 1$

$z = (0, 0, 1, 0) \xrightarrow{} 1$
Step 3: Checking $\varphi : Z \to \{0, 1\}$ preserves r_4

$$r_4 = \text{hom}(X_4, M) \subseteq \{0, 1\}^4$$

Pick $w, x, y, z \in Z$. For example, $w = (0, 0, 0, 1)$ $\varphi \mapsto 1$

$x = (0, 0, 1, 0)$ $\varphi \mapsto 1$

$y = (0, 1, 0, 0)$ $\varphi \mapsto 1$

$z = (0, 0, 1, 0)$ $\varphi \mapsto 1$

So φ preserves r_4, since $r_4^Z = \emptyset$.
Step 3: Checking $\varphi : Z \to \{0, 1\}$ preserves r_4

$r_4 = \text{hom}(X_4, M) \subseteq \{0, 1\}^4$

Pick $w, x, y, z \in Z$. For example, $w = (0, 0, 0, 1) \xrightarrow{\varphi} 1$

$x = (0, 0, 1, 0) \xrightarrow{\varphi} 1$

$y = (0, 1, 0, 0) \xrightarrow{\varphi} 1$

$z = (0, 0, 1, 0) \xrightarrow{\varphi} 1$

So φ preserves r_4, since $r_4^Z = \emptyset$.

From the picture

- Since $Z = X_3$, we are picking a map $\omega : X_4 \to X_3$.

![Diagram](attachment:image.png)
Step 3: Checking $\varphi: \mathcal{Z} \to \{0, 1\}$ preserves r_4

$r_4 = \text{hom}(X_4, M) \subseteq \{0, 1\}^4$

Pick $w, x, y, z \in \mathcal{Z}$. For example, $w = (0, 0, 0, 1) \xrightarrow{\varphi} 1$

$x = (0, 0, 1, 0) \xrightarrow{} 1$

$y = (0, 1, 0, 0) \xrightarrow{} 1$

$z = (0, 0, 1, 0) \xrightarrow{} 1$

So φ preserves r_4, since $r_4^Z = \emptyset$.

From the picture

- Since $\mathcal{Z} = X_3$, we are picking a map $\omega: X_4 \to X_3$.
- Want: If each $\pi_j \circ \omega : X_4 \to \{0, 1\}$ is in r_4, then $\varphi \circ \omega : X_4 \to \{0, 1\}$ is in r_4.

Step 3: Checking $\varphi : Z \to \{0, 1\}$ preserves r_4

$r_4 = \text{hom}(X_4, M) \subseteq \{0, 1\}^4$

Pick $w, x, y, z \in Z$. For example, $w = (0, 0, 0, 1) \xrightarrow{\varphi} 1$

$x = (0, 0, 1, 0) \xrightarrow{} 1$

$y = (0, 1, 0, 0) \xrightarrow{} 1$

$z = (0, 0, 1, 0) \xrightarrow{} 1$

So φ preserves r_4, since $r_4^Z = \emptyset$.

From the picture

▶ Since $Z = X_3$, we are picking a map $\omega : X_4 \to X_3$.

▶ Want: If each $\pi_i \circ \omega : X_4 \to \{0, 1\}$ is in r_4, then $\varphi \circ \omega : X_4 \to \{0, 1\}$ is in r_4.

▶ But $X_3 \leq M^4$, so we really want: If $\omega : X_4 \to X_3$, then $\varphi \circ \omega : X_4 \to M$ is a graph homomorphism. True vacuously.
Proof-by-picture: Recap

Consider the 2-element algebra \(M = \langle \{0, 1\}; m \rangle \), where \(m: \{0, 1\}^3 \to \{0, 1\} \) is the majority operation.

This picture below proves that \(M \) admits infinitely many relations.

The red labels on \(X_n \) yield a map \(\varphi_n: X_n \to \{0, 1\} \) that is not a graph homomorphism.
Proof-by-picture: General approach

Lemma

To show that \(A \) admits infinitely many relations, it suffices to find

- a structure \(\mathbb{A} = \langle A; R \rangle \) that is compatible with \(A \), and skip
Proof-by-picture: General approach

Lemma

To show that A admits infinitely many relations, it suffices to find

- a structure $\mathbb{A} = \langle A; R \rangle$ that is compatible with A, and skip
- for all $n \in \mathbb{N}$,
 - a finite structure $X_n \in \text{ISP}(A)$, and
 - a map $\varphi_n : X_n \to A$ that is not a morphism from X_n to A
Lemma

To show that \(A \) admits infinitely many relations, it suffices to find

- a structure \(A = \langle A; R \rangle \) that is compatible with \(A \), and
- for all \(n \in \mathbb{N} \),
 - a finite structure \(X_n \in \text{ISP}(A) \), and
 - a map \(\varphi_n : X_n \rightarrow A \) that is not a morphism from \(X_n \) to \(A \)

such that, either for all \(k < \ell \) or for all \(k > \ell \), the following condition holds:

- for every morphism \(\omega : X_\ell \rightarrow X_k \), the map \(\varphi_k \circ \omega : X_\ell \rightarrow A \) is a morphism from \(X_\ell \) to \(A \) (i.e., the relation \(r_k \) is not ca-definable from \(r_\ell \)).
A general condition for ‘infiniteness’

A bad relation

If a finite algebra A either

- has a pair of non-permuting congruences, or
- is of the form B^2, for non-trivial B,

For non-permuting congruences:

$$r = \theta_1 \cdot \theta_2.$$

For $A = B^2$:

$$r = \{ (x_1, y_1), (x_2, y_2) \in A^2 | x_2 = y_1 \}.$$

A general condition for ‘infiniteness’

A bad relation

If a finite algebra \mathbf{A} either
 - has a pair of non-permuting congruences, or
 - is of the form \mathbf{B}^2, for non-trivial \mathbf{B},
then \mathbf{A} has elements a, b, c and a compatible binary relation r such that

For non-permuting congruences:
$$r = \theta_1 \cdot \theta_2.$$

For $\mathbf{A} = \mathbf{B}^2$:
$$r = \{ (x_1, y_1), (x_2, y_2) \in \mathbf{A}^2 \mid x_2 = y_1 \}.$$

\[\text{in } r \quad \begin{array}{ccc} \circ & a & \circ \\ \circ & b & \circ \end{array} \quad \text{not in } r \quad \begin{array}{ccc} \circ & a & \circ \\ \circ & b & \circ \end{array} \]
A general condition for ‘infiniteness’

A bad relation

If a finite algebra A either

- has a pair of non-permuting congruences, or
- is of the form B^2, for non-trivial B,

then A has elements a, b, c and a compatible binary relation r such that

For non-permuting congruences: $r = \theta_1 \cdot \theta_2$.

For $A = B^2$: $r = \{ ((x_1, x_2), (y_1, y_2)) \in A^2 \mid x_2 = y_1 \}$.
A general condition for ‘infiniteness’

Theorem

Let A be a finite algebra with elements a, b, c and a compatible binary relation r such that

Then A admits infinitely many relations.
A general condition for ‘infiniteness’

The theorem

Theorem

Let A be a finite algebra with elements a, b, c and a compatible binary relation r such that

$$\text{in } r \quad c \quad a \quad b \quad \text{not in } r \quad c \quad a$$

Then A admits infinitely many relations.

There is an obvious choice for $A = \langle A; R \rangle$,
A general condition for ‘infiniteness’

Theorem

Let A be a finite algebra with elements a, b, c and a compatible binary relation r such that

- $c \circ a \in r$
- $c \circ a \not\in r$
- $b \circ a$

Then A admits infinitely many relations.

There is an obvious choice for $A = \langle A; R \rangle$, namely, $A := \langle A; r \rangle$.
Theorem

Let A be a finite algebra with elements a, b, c and a compatible binary relation r such that

Then A admits infinitely many relations.

Proof of Case 1: $(b, b) \notin r$ or $(c, c) \notin r$
A general condition for ‘infiniteness’

The theorem

Theorem

Let \(A \) be a finite algebra with elements \(a, b, c \) and a compatible binary relation \(r \) such that

\[
in r \quad \begin{cases} a & \text{c} \\ b & \text{c} \end{cases} \quad \text{not in } r \quad \begin{cases} c & \text{a} \\ c & \text{b} \end{cases}
\]

Then \(A \) admits infinitely many relations.

Proof of Case 2: \((b, b) \in r \) and \((c, c) \in r\)
A general condition for ‘infiniteness’

Applications

Corollary

If one of the following holds, then \(A \) admits infinitely many relations:

1. \(A \) has a pair of non-permuting congruences;
2. \(A \) is isomorphic to \(B^2 \), with \(B \) non-trivial;
3. \(A \) is a subalgebra of \(B^2 \) such that \(\{(0, 0), (0, 1), (1, 0)\} \subseteq A \), for some \(0 \neq 1 \) in \(B \).

This result covers:

- Boolean algebras of size \(\geq 4 \),
- lattices of size \(\geq 3 \),
- \(p \)-algebras of size \(\geq 4 \),
- non-chain Heyting algebras, \ldots
Another general condition for ‘infiniteness’

Theorem and example

Theorem

If \mathbf{A} admits only finitely many relations, then $\text{Con}(\mathbf{A})$ is an \mathcal{N}-free distributive lattice.
Another general condition for ‘infiniteness’

Theorem and example

Theorem

If A *admits only finitely many relations, then* $\text{Con}(A)$ *is an* \mathbb{N}*-free distributive lattice.*

Example

Assume $M = A \times B \times C$, for non-trivial finite algebras A, B, C. Then M admits infinitely many relations.
Another general condition for ‘infiniteness’

Proof-by-picture

Proof

Assume \(\text{Con}(A) \) contains \(\alpha \).
Another general condition for ‘infiniteness’

Proof-by-picture

Proof

Assume \text{Con}(A) contains \begin{tikzpicture}[baseline=(current bounding box.center)]
\node (a) at (0,0) {α};
\node (b) at (1,0) {β};
\node (c) at (1,1) {δ};
\draw (a) -- (b);
\draw (b) -- (c);
\end{tikzpicture}.

Take \(A = \langle A; \alpha, \beta, \delta \rangle \) and choose \((a, b) \in \delta \setminus \beta\).
Another general condition for ‘infiniteness’

Proof-by-picture

Proof

Assume $\text{Con}(A)$ contains α, β, δ.

Take $A = \langle A; \alpha, \beta, \delta \rangle$ and choose $(a, b) \in \delta \setminus \beta$.

X_4 \rightarrow X_6 \rightarrow X_8
Another general condition for ‘infiniteness’

Proof-by-picture

Proof

Assume $\text{Con}(A)$ contains $\alpha \land \beta$.

Take $A = \langle A; \alpha, \beta, \delta \rangle$ and choose $(a, b) \in \delta \setminus \beta$.

So A admits infinitely many relations.
Finding examples of ‘finiteness’

A definition

A finite algebra A is **strictly affine complete** if:

for all $n \in \mathbb{N}$ and all $X \subseteq A^n$, every function $f : X \to A$ that preserves each $\theta \in \text{Con}(A)$ extends to a polynomial of A.

Example

Every finite algebra that generates an arithmetical variety is strictly affine complete (Pixley).
A finite algebra A is strictly affine complete if:

for all $n \in \mathbb{N}$ and all $X \subseteq A^n$, every function $f : X \to A$ that preserves each $\theta \in \text{Con}(A)$ extends to a polynomial of A.

Example
Every finite algebra that generates an arithmetical variety is strictly affine complete (Pixley).
Theorem

Let A be a finite algebra such that

1. A is strictly affine complete,
2. each $a \in A$ is the value of a constant term function of A, and
3. $\text{Con}(A)$ is an \mathbb{N}-free lattice.

Then A admits only finitely many relations.
Finding examples of ‘finiteness’
A theorem

Theorem

Let A be a finite algebra such that

1. A is strictly affine complete,
2. each $a \in A$ is the value of a constant term function of A, and
3. $\text{Con}(A)$ is an \mathbb{N}-free lattice.

Then A admits only finitely many relations.

Proof

We use the duality given by the alter ego $\mathbb{A} := \langle A; \text{Con}(A), \mathcal{F} \rangle$ to represent all the compatible relations on A.
Finding examples of ‘finiteness’
Application of the theorem

Example
Let L be a finite \mathbb{N}-free distributive lattice.
There exists a finite algebra A with $\text{Con}(A) \cong L$ such that A admits only finitely many relations.
Finding examples of ‘finiteness’
Application of the theorem

Example
Let L be a finite \mathbb{N}-free distributive lattice.
There exists a finite algebra A with $\text{Con}(A) \cong L$ such that A admits only finitely many relations.

Proof
Finding examples of ‘finiteness’

Application of the theorem

Example
Let L be a finite \mathbb{N}-free distributive lattice.
There exists a finite algebra A with $\text{Con}(A) \cong L$ such that A admits only finitely many relations.

Proof

$L = \langle A; \lor, \land, \rightarrow, a_1, a_2, \ldots, a_n \rangle$
Example

Assume that $\mathbf{M} = \mathbf{A} \times \mathbf{B}$ is the independent product of two primal algebras. Then \mathbf{M} admits only finitely many relations.
Finding examples of ‘finiteness’
Another application of the theorem

Example

Assume that $M = A \times B$ is the independent product of two primal algebras. Then M admits only finitely many relations.

For example, the following algebras admit only finitely many relations:

- the four-element Boolean algebra enriched with all elements as constants;
- the ring with unity \mathbb{Z}_{pq}, for all distinct primes p and q.
Finding examples of ‘finiteness’
Another application of the theorem

Example
Assume that $M = A \times B$ is the independent product of two primal algebras. Then M admits only finitely many relations.

For example, the following algebras admit only finitely many relations:
- the four-element Boolean algebra enriched with all elements as constants;
- the ring with unity \mathbb{Z}_{pq}, for all distinct primes p and q.
Finding examples of ‘finiteness’

Another application of the theorem

Example

Assume that $M = A \times B$ is the independent product of two primal algebras. Then M admits only finitely many relations.

For example, the following algebras admit only finitely many relations:

- the four-element Boolean algebra enriched with all elements as constants;
- the ring with unity \mathbb{Z}_{pq}, for all distinct primes p and q.

Mahalo!