Separating Clones Near the Top of the Clone Lattice

Á. Szendrei

Department of Mathematics
University of Colorado at Boulder

AMS Sectional Meeting
Honolulu, HI, March 3–4, 2012
A finite, \(k := |A| \geq 2 \)
Separation Theorem for a Clone Q

A finite, $k := |A| \geq 2$

$\mathcal{P} := \mathcal{L}_A - [Q)$

$\mathcal{P} \supseteq \mathcal{O}_A$

\mathcal{P}_{max}
A finite, \(k := |A| \geq 2 \)

\[\mathcal{P} := \mathcal{L}_A - [Q] \]

\(\mathcal{Q} \text{ fin gen} \Rightarrow \bullet \ Q \nsubseteq C \iff C \subseteq \mathcal{M} \text{ for some } \mathcal{M} \in \mathcal{P}_{\text{max}} \)
Separation Theorem for a Clone \mathcal{Q}

A finite, $k := |A| \geq 2$

$\mathcal{P} := \mathfrak{S}_A - [\mathcal{Q}]$

\mathcal{Q} fin gen \iff $\bullet \mathcal{Q} \not\subseteq \mathcal{C} \iff \mathcal{C} \subseteq \mathcal{M}$ for some $\mathcal{M} \in \mathcal{P}_{\text{max}}$

$[\mathcal{Q}]$ finite \implies $\bullet \mathcal{P}_{\text{max}}$ is finite
Example 1: The Maximal Subclones of \mathcal{O}_A

\[\mathcal{Q} = \mathcal{O}_A \]

Rosenberg’s Thm. The maximal clones on A are of the clones \(\{\rho\}^\perp = \{f \in \mathcal{O}_A : f \text{ preserves } \rho\} \) for one of six types of rels ρ:

- Affn
- Centr
- Eq
- Perm
- Reg
- BPO
Example 1: The Maximal Subclones of \mathcal{O}_A

$\mathcal{Q} = \mathcal{O}_A$

Rosenberg’s Thm. The maximal clones on A are of the clones $\{\rho\}^\perp = \{f \in \mathcal{O}_A : f \text{ preserves } \rho\}$ for one of six types of rels ρ:

- Affn
- Centr
- Perm
- Eq
- Reg
- BPO
Example 1: The Maximal Subclones of \mathcal{O}_A

$\mathcal{Q} = \mathcal{O}_A$

Rosenberg’s Thm. The maximal clones on A are of the clones
\[\left\{ \rho \right\}^\perp = \left\{ f \in \mathcal{O}_A : f \text{ preserves } \rho \right\} \]
for one of six types of rels ρ:

- Affn
- Centr
- Reg
- Eq
- Perm
- BPO

Á. Szendrei

Separating Clones Near the Top of the Clone Lattice
Example 1: The Maximal Subclones of \mathcal{O}_A

$\mathcal{Q} = \mathcal{O}_A$

Rosenberg’s Thm. The maximal clones on A are of the clones $\{\rho\}^\perp = \{f \in \mathcal{O}_A : f \text{ preserves } \rho\}$ for one of six types of rels ρ:

- **Affn**
- **Perm**
- **BPO**
Example 1: The Maximal Subclones of \mathcal{O}_A

$\mathcal{Q} = \mathcal{O}_A$

Rosenberg’s Thm. The maximal clones on A are of the clones $\{\rho\}^\perp = \{f \in \mathcal{O}_A : f \text{ preserves } \rho\}$ for one of six types of rels ρ:

- Affn
- Perm
- Eq
- BPO

Á. Szendrei
Separating Clones Near the Top of the Clone Lattice
Example 1: The Maximal Subclones of \mathcal{O}_A

$\mathcal{Q} = \mathcal{O}_A$

Rosenberg’s Thm. The maximal clones on A are of the clones $\{\rho\}^\perp = \{f \in \mathcal{O}_A : f \text{ preserves } \rho\}$ for one of six types of rels ρ:

- Affn
- Centr
- subsets
- Perm
- Eq
- BPO
Example 1: The Maximal Subclones of \mathcal{O}_A

$\mathcal{Q} = \mathcal{O}_A$

Rosenberg's Thm. The maximal clones on A are of the clones $\{\rho\}^\perp = \{f \in \mathcal{O}_A : f$ preserves $\rho\}$ for one of six types of rels ρ:

- Affn
- Centr
- Subsets
- Perm
- Eq
- Reg
- BPO

Á. Szendrei
Separating Clones Near the Top of the Clone Lattice
Example 2: Submaximal Clones

$Q = \{\rho\}^\perp$, a finitely generated maximal clone on A
Example 2: Submaximal Clones

\[Q = \{\rho\}^\bot, \text{ a finitely generated maximal clone on } A \]
Example 2: Submaximal Clones

$Q = \{\rho\}^\perp$, a finitely generated maximal clone on A
Example 2: Submaximal Clones

\[Q = \{ \rho \}^\perp, \text{ a finitely generated maximal clone on } A \]

Submax clones known if \(\rho \) is

- permutation [Rosenberg–Sz]
- subset [Lau]
- affine relation [Sz]
- equivalence relation with one nontrivial block [Lau]
- \(\iota \), i.e., \(Q \) is Słupecki's clone [Rosenberg–Haddad]

If \(|A| = k = 3 \) [Lau].

Á. Szendrei
Example 2: Submaximal Clones

$Q = \{\rho\}^\perp$, a finitely generated maximal clone on A

Submax clones known if ρ is

- perm [Rosenberg–Sz]

Á. Szendrei
Separating Clones Near the Top of the Clone Lattice
Example 2: Submaximal Clones

\[Q = \{ \rho \}^\perp, \] a finitely generated maximal clone on \(A \)

Submax clones known if \(\rho \) is

- perm [Rosenberg–Sz]
- subset [Lau]

\[\mathcal{L}_A \]
Example 2: Submaximal Clones

\[Q = \{\rho\}^\perp, \text{ a finitely generated maximal clone on } A \]

Submax clones known if \(\rho \) is

- perm [Rosenberg–Sz]
- subset [Lau]
- affine rel [Sz]

Á. Szendrei

Separating Clones Near the Top of the Clone Lattice
Example 2: Submaximal Clones

\[Q = \{\rho\}^\perp, \text{ a finitely generated maximal clone on } A \]

Submax clones known if \(\rho \) is

- perm [Rosenberg–Sz]
- subset [Lau]
- affine rel [Sz]
- equiv rel with one nontrivial block [Lau]

Á. Szendrei
Separating Clones Near the Top of the Clone Lattice
Example 2: Submaximal Clones

\[Q = \{\rho\}^\perp, \text{ a finitely generated maximal clone on } A \]

Submax clones known if ρ is
- perm [Rosenberg–Sz]
- subset [Lau]
- affine rel [Sz]
- equiv rel with one nontrivial block [Lau]
- ι_k, i.e., Q is Słupecki’s clone [Rosenberg–Haddad]
Example 2: Submaximal Clones

\[Q = \{\rho\}^\perp, \text{ a finitely generated maximal clone on } A \]

Submax clones known if \(\rho \) is

- perm [Rosenberg–Sz]
- subset [Lau]
- affine rel [Sz]
- equiv rel with one nontrivial block [Lau]
- \(\iota_k \), i.e., \(Q \) is Słupecki’s clone [Rosenberg–Haddad]

or if \(|A| = k = 3 \) [Lau].
Name your favorite \(\mathcal{Q} \)

\[\mathcal{O}_A \]

\[\mathcal{P}_{\text{max}}\]

Á. Szendrei

Separating Clones Near the Top of the Clone Lattice
Name your favorite Q

$\diamond\ Q = \text{clone generated by the ternary discriminator}$
\(\mathcal{Q} = \) clone generated by the ternary discriminator
\(\mathcal{Q} = \) clone of nonsurjective operations:
\[S^- := \{ f \in \mathcal{O}_A : f \text{ nonsurj} \} \cup \langle \text{id} \rangle, \]
$Q = \text{clone generated by the ternary discriminator}$

$Q = \text{clone of nonsurjective operations:}$

$S^- := \{ f \in \mathcal{O}_A : f \text{ nonsurj} \} \cup \langle \text{id} \rangle,$

a subclone of Słupecki’s clone:

$S := \{ f \in \mathcal{O}_A : f \text{ nonsurj} \} \cup \langle \text{Sym}_A \rangle$
\[Q = \text{clone generated by the ternary discriminator} \]
\[Q = \text{clone of nonsurjective operations:} \]
\[S^- := \{ f \in \mathcal{O}_A : f \text{ nonsurj} \} \cup \langle \text{id} \rangle, \]
\[\text{a subclone of Śłupecki’s clone:} \]
\[S := \{ f \in \mathcal{O}_A : f \text{ nonsurj} \} \cup \langle \text{Sym}_A \rangle \]
\[\ldots \]
\equiv_C on \mathcal{O}_A

$f \equiv_C g \iff f = g(h_1, \ldots)$ and $g = f(h'_1, \ldots)$ for some $h_1, \ldots, h'_1, \ldots \in C$.
\equiv_C on \mathcal{O}_A:

$f \equiv_C g \iff f = g(h_1, \ldots)$ and $g = f(h'_1, \ldots)$ for some $h_1, \ldots, h'_1, \ldots \in \mathcal{C}$.

[Lehtonen–Sz]
\(\equiv_C \) on \(\mathcal{O}_A \):
\[f \equiv_C g \iff f = g(h_1, \ldots) \text{ and } g = f(h_1', \ldots) \text{ for some } h_1, \ldots, h_1', \ldots \in \mathcal{C}. \]

[Lehtonen–Sz]

\((k-1) \)-ary central rels
\(\sigma_1, \sigma_k \)
\{1\}, \{k\}
sub-sets
perms
equiv. rels
\(\mathcal{O}_A \)

\(\mathcal{C}_E \) determined by:
chain \(E \) of equiv rels & perms preserving \(E \) & all subsets
least discriminator clone (\(E \) triv)

Filter of clones \(\mathcal{C} \) with fin many \(\equiv_C \)-classes on \(\mathcal{O}_A \)
\(\equiv_C \) on \(\mathcal{O}_A \):

\[f \equiv_C g \iff f = g(h_1, \ldots) \text{ and } g = f(h'_1, \ldots) \text{ for some } h_1, \ldots, h'_1, \ldots \in \mathcal{C}. \]

[Lehtonen–Sz]
\equiv_C on \mathcal{O}_A:

$f \equiv_C g \iff f = g(h_1, \ldots)$ and $g = f(h'_1, \ldots)$ for some $h_1, \ldots, h'_1, \ldots \in \mathcal{C}$.

$\sigma_1 \ldots \sigma_k$

least discriminator clone (E triv)

C_E determined by:

chain E of equiv rels
& perms preserving E
& all subsets

Filter of clones \mathcal{C}
with fin many
\equiv_C-classes on \mathcal{O}_A

Sep Thm for S^-
$
\downarrow
$
no other clones in Filter here
\equiv_C on \mathcal{O}_A: $\mathcal{F}(A, U) := \{A^n \overset{f}{\to} U : n \geq 1\}$:

$f \equiv_C g \iff f = g(h_1, \ldots)$ and $g = f(h'_1, \ldots)$ for some $h_1, \ldots, h'_1, \ldots \in \mathcal{C}$.
\equiv_C on \mathcal{O}_A: $\mathcal{F}(A, U) := \{ A^n \rightarrow^f U : n \geq 1 \}$:

$f \equiv_C g \iff f = g(h_1, \ldots)$ and $g = f(h'_1, \ldots)$ for some $h_1, \ldots, h'_1, \ldots \in \mathcal{C}$.

If $|U| > |A| + 1$:
Let $|A| = k > 2$.

$\mathcal{V} := \mathcal{L}_A - [S^-)$
Let $|A| = k > 2$.

$$\mathcal{P} := \mathcal{L}_A - [S^-]$$
Subclones of S: Some Facts

2^{\aleph_0} subclones,

$S = S^{<k}$
Subclones of S: Some Facts

$|2^\aleph_0|$ subclones,

\[
S = S^{<k} = S^{<k-1} = S^{<3} = \langle T \rangle
\]

(Słupecki, 1939; Burle, 1967)
Subclones of S: Some Facts

2^\aleph_0 subclones,

\[
S = S^{<k}
\]

(Słupecki, 1939; Burle, 1967)

(Szabó, unpubl.)

Á. Szendrei

Separating Clones Near the Top of the Clone Lattice
2^\aleph_0 subclones,

\(S = S^<_k \)

\(S^<_k - (S^<_{k-1})^- \)

\(S^<_3 \)

\(S^<_3 - (S^<_3)^- \)

\(S^<_3 - (S^<_3)^- \)

\(\langle T^- \rangle \)

\(\langle Sym_A \rangle \)

(Haddad–Rosenberg, 1994)

(Słupecki, 1939; Burle, 1967)

(Szabó, unpubl.)

(Szabó, unpubl.)

Á. Szendrei

Separating Clones Near the Top of the Clone Lattice
Subclones of S: Some Facts

$2^\mathbb{N}_0$ subclones, finitely many maximal subclones

(Szláveczki, 1939; Burle, 1967)

(Szabó, unpubl.)

(Haddad–Rosenberg, 1994)
Corollary

[Haddad–Rosenberg]

The maximal subclones of S are the following:

$$S_{k-1} := \{ f \in S : f(x, \ldots, x) \in \text{Sym} A \Rightarrow f(x, \ldots, x) \in G \}$$

where G is a maximal subgroup of $\text{Sym} A$, $S_{k-1} < S$ if $k \geq 4$, and B if $k = 3$.
The Maximal Subclones of S

Corollary

[Haddad–Rosenberg]

The maximal subclones of S are the following:

$$S[G] := \{ f \in S : f(x, \ldots, x) \in \text{Sym}_A \Rightarrow f(x, \ldots, x) \in G \}$$

where G is a maximal subgroup of Sym_A, and $S < k - 1$ if $k \geq 4$, and B if $k = 3$.
Corollary

[Haddad–Rosenberg]
The maximal subclones of S are the following:

- $S[G] := \{ f \in S : f(x, \ldots, x) \in \text{Sym}_A \Rightarrow f(x, \ldots, x) \in G \}$
 where G is a maximal subgroup of Sym_A,

- $S^{<k-1}$ if $k \geq 4$, and B if $k = 3$.

Á. Szendrei
Separating Clones Near the Top of the Clone Lattice
Theorem

The maximal members of $\mathcal{L}_A - [S^-]$ are the clones $\{\rho\} \perp$ with

Here:
- Reg^* := $\text{Reg} - \{\iota_k\}$
- $\{\iota_k\} \perp S$
The maximal members of $\mathcal{L}_A - [S^-)$ are the clones $\{\rho\} \perp$ with $\rho \in \text{BPO} \cup \text{Perm} \cup \text{Affn} \cup \text{Eq} \cup \text{Centr} \cup \text{Reg}^*$

Here:
- $\text{Reg}^* := \text{Reg} - \{\iota_k\}$
- $\{\iota_k\} \perp = S$
- $\{\beta\} \perp = \text{Burle's clone}$
The maximal members of \(\mathcal{L}_A - [S^-] \) are the clones \(\{\rho\} \perp \) with

\[
\rho \in \text{BPO} \cup \text{Perm} \cup \text{Affn} \cup \text{Eq} \cup \text{Centr} \cup \text{Reg}^* \cup \begin{cases}
\text{aCentr} \cup \text{aReg} & \text{if } k \geq 4, \\
\{\beta\} & \text{if } k = 3.
\end{cases}
\]
Theorem

The maximal members of \(\mathcal{L}_A - [S^-] \) are the clones \(\{\rho\} \perp \) with

\[
\rho \in \text{BPO} \cup \text{Perm} \cup \text{Affn} \cup \text{Eq} \cup \text{Centr} \cup \text{Reg}^* \\
\cup \begin{cases}
\text{aCentr} \cup \text{aReg} & \text{if } k \geq 4, \\
\{\beta\} & \text{if } k = 3.
\end{cases}
\]

Here:

- \(\text{Reg}^* := \text{Reg} - \{\iota_k\}, \quad \{\iota_k\} \perp = S \)
The maximal members of $\mathcal{L}_A - [S^-]$ are the clones $\{\rho\}^\perp$ with

$$\rho \in BPO \cup Perm \cup Affn \cup Eq \cup Centr \cup Reg^*$$

$$\cup \begin{cases} aCentr \cup aReg & \text{if } k \geq 4, \\ \{\beta\} & \text{if } k = 3. \end{cases}$$

Here:

- $Reg^* := Reg - \{\iota_k\}$, $\{\iota_k\}^\perp = S$
- $\{\beta\}^\perp = B = \text{Burle's clone}$
For $1 \leq m \leq k = |A|$, let

$$\iota_m := \{ \bar{a} \in A^m : a_i = a_j \text{ for some } i \neq j \}.$$
For $1 \leq m \leq k = |A|$, let

$$\iota_m := \{ \bar{a} \in A^m : a_i = a_j \text{ for some } i \neq j \}.$$
For $1 \leq m \leq k = |A|$, let

$$\iota_m := \{ \bar{a} \in A^m : a_i = a_j \text{ for some } i \neq j \}.$$

Definition

An m-ary relation ρ on A is

- **central** if $1 \leq m \leq k - 1$,
- **almost central** if $2 \leq m \leq k - 2$ and $\rho \neq A^m$, but for each $B \in (A^{k-1})$, either $\rho|_B$ is central on B or $\rho|_B = B^m$.

Á. Szendrei

Separating Clones Near the Top of the Clone Lattice
For $1 \leq m \leq k = |A|$, let

$$\iota_m := \{ \overline{a} \in A^m : a_i = a_j \text{ for some } i \neq j \}.$$

Definition

An m-ary relation ρ on A is

- **central** if $1 \leq m \leq k - 1$,
 - ρ is totally reflexive: $\iota_m \subseteq \rho$,
Definitions: Central and Almost Central Relations

For $1 \leq m \leq k = |A|$, let

$$\iota_m := \{ \bar{a} \in A^m : a_i = a_j \text{ for some } i \neq j \}.$$

Definition

An m-ary relation ρ on A is

- **central** if $1 \leq m \leq k - 1$,
 - ρ is totally reflexive: $\iota_m \subseteq \rho$,
 - ρ is totally symmetric: invariant under permuting coords,
 - and

- **almost central** if $2 \leq m \leq k - 2$ and $\rho \neq A^m$ and for each $B \in (A^{k-1})$ either $\rho|_B$ is central on B or $\rho|_B = B^m$.
For $1 \leq m \leq k = |A|$, let

$$\iota_m := \{\bar{a} \in A^m : a_i = a_j \text{ for some } i \neq j\}.$$

Definition

An m-ary relation ρ on A is

- **central** if $1 \leq m \leq k - 1$,
 - ρ is totally reflexive: $\iota_m \subseteq \rho$,
 - ρ is totally symmetric: invariant under permuting coords, and
 - $\rho \neq A^m$, but $\{c\} \times A^{m-1} \subseteq \rho$ for some $c \in A$.

- **almost central** if $2 \leq m \leq k - 2$ $\rho \neq A^m$ and ρ is not a central rel, but for each $B \in (A^{k-1})$, either $\rho|_B$ is central on B or $\rho|_B = B^m$.

Á. Szendrei

Separating Clones Near the Top of the Clone Lattice
For $1 \leq m \leq k = |A|$, let

$$\iota_m := \{ \overline{a} \in A^m : a_i = a_j \text{ for some } i \neq j \}.$$

Definition

An m-ary relation ρ on A is

- **central** if $1 \leq m \leq k - 1$,
 - ρ is totally reflexive: $\iota_m \subseteq \rho$,
 - ρ is totally symmetric: invariant under permuting coords, and
 - $\rho \neq A^m$, but $\{c\} \times A^{m-1} \subseteq \rho$ for some $c \in A$.

- **almost central** if $2 \leq m \leq k - 2$
Definitions: Central and Almost Central Relations

For $1 \leq m \leq k = |A|$, let

$$\iota_m := \{ \bar{a} \in A^m : a_i = a_j \text{ for some } i \neq j \}.$$

Definition

An m-ary relation ρ on A is

- **central** if $1 \leq m \leq k - 1$,
 - ρ is totally reflexive: $\iota_m \subseteq \rho$,
 - ρ is totally symmetric: invariant under permuting coords, and
 - $\rho \neq A^m$, but $\{c\} \times A^{m-1} \subseteq \rho$ for some $c \in A$.

- **almost central** if $2 \leq m \leq k - 2$
 - $\rho \neq A^m$ and ρ is not a central rel, but
For $1 \leq m \leq k = |A|$, let

$$\iota_m := \{ \overline{a} \in A^m : a_i = a_j \text{ for some } i \neq j \}.$$

Definition

An m-ary relation ρ on A is

- **central** if $1 \leq m \leq k - 1$,
 - ρ is totally reflexive: $\iota_m \subseteq \rho$,
 - ρ is totally symmetric: invariant under permuting coords, and
 - $\rho \neq A^m$, but $\{c\} \times A^{m-1} \subseteq \rho$ for some $c \in A$.

- **almost central** if $2 \leq m \leq k - 2$
 - $\rho \neq A^m$ and ρ is not a central rel, but
 - for each $B \in \binom{A}{k-1}$, either $\rho|_B$ is central on B or $\rho|_B = B^m$.

Á. Szendrei

Separating Clones Near the Top of the Clone Lattice
Definitions: Regular and Almost Regular Relations

For a set E of equiv rels on A, with exactly m blocks each, let

$$\lambda_E := \bigcap_{\theta \in E} \lambda_\theta \quad \text{where} \quad \lambda_\theta := \{ \overline{a} \in A^m : a_i \theta a_j \text{ for some } i \neq j \}.$$

Á. Szendrei
Separating Clones Near the Top of the Clone Lattice
Definitions: Regular and Almost Regular Relations

For a set E of equiv rels on A, with exactly m blocks each, let

$$
\lambda_E := \bigcap_{\theta \in E} \lambda_\theta \quad \text{where} \quad \lambda_\theta := \{ \overline{a} \in A^m : a_i \theta a_j \text{ for some } i \neq j \}.
$$

Definition

An m-ary relation ρ on A is

- **Regular** if $3 \leq m \leq k$ and $\rho = \lambda_E$ with E as above s.t. $\bigcap_{r \in E} \bigcap_{\ell \in E} \neq \emptyset$ for any blocks B_ℓ of θ_ℓ.

- **Almost Regular** if either $3 \leq m \leq k - 2$ and $\rho = \lambda_E$ with E as above, $|E| \geq 2$, s.t. $B_j \cap B_\ell = \emptyset$ for nonsingl. blocks B_j of θ_j, B_ℓ of θ_ℓ with $j \neq \ell$; or

 - $m = k - 1 \geq 3$ and ρ is totally reflexive, totally symmetric, $\rho \notin \text{Centr} \cup \text{Reg}^*$.
Definitions: Regular and Almost Regular Relations

For a set E of equiv rels on A, with exactly m blocks each, let

$$
\lambda_E := \bigcap_{\theta \in E} \lambda_\theta \quad \text{where} \quad \lambda_\theta := \{ \overline{a} \in A^m : a_i \theta a_j \text{ for some } i \neq j \}.
$$

Definition

An m-ary relation ρ on A is

- **regular** if $3 \leq m \leq k$ and $\rho = \lambda_E$ with E as above s.t.
For a set E of equiv rels on A, with exactly m blocks each, let

$$\lambda_E := \bigcap_{\theta \in E} \lambda_\theta$$

where

$$\lambda_\theta := \{ \overline{a} \in A^m : a_i \theta a_j \text{ for some } i \neq j \}.$$

Definition

An m-ary relation ρ on A is

- **regular** if $3 \leq m \leq k$ and $\rho = \lambda_E$ with E as above s.t.
 - $\bigcap_{\ell=1}^r B_\ell \neq \emptyset$ for any blocks B_ℓ of θ_ℓ.

- almost regular if either $3 \leq m \leq k - 2$ and $\rho = \lambda_E$ with E as above, $|E| \geq 2$, s.t.
 - $B_j \cap B_\ell = \emptyset$ for nonsingl. blocks B_j of θ_j, B_ℓ of θ_ℓ with $j \neq \ell$;
 - or $m = k - 1 \geq 3$ and ρ is totally reflexive, totally symmetric, $\rho \not\in \text{Centr} \cup \text{Reg}^*$.

Á. Szendrei

Separating Clones Near the Top of the Clone Lattice
Definitions: Regular and Almost Regular Relations

For a set E of equiv rels on A, with exactly m blocks each, let

$$
\lambda_E := \bigcap_{\theta \in E} \lambda_{\theta}
$$

where

$$
\lambda_{\theta} := \{ \overline{a} \in A^m : a_i \theta a_j \text{ for some } i \neq j \}.
$$

Definition

An m-ary relation ρ on A is

- **regular** if $3 \leq m \leq k$ and $\rho = \lambda_E$ with E as above s.t.
 - $\bigcap_{\ell=1}^r B_\ell \neq \emptyset$ for any blocks B_ℓ of θ_ℓ.

- **almost regular** if
Definitions: Regular and Almost Regular Relations

For a set E of equiv rels on A, with exactly m blocks each, let

$$
\lambda_E := \bigcap_{\theta \in E} \lambda_\theta \quad \text{where} \quad \lambda_\theta := \{ \bar{a} \in A^m : a_i \theta a_j \text{ for some } i \neq j \}.
$$

Definition

An m-ary relation ρ on A is

- **regular** if $3 \leq m \leq k$ and $\rho = \lambda_E$ with E as above s.t.
 - $\bigcap_{\ell=1}^r B_\ell \neq \emptyset$ for any blocks B_ℓ of θ_ℓ.
- **almost regular** if
 - either $3 \leq m \leq k - 2$ and $\rho = \lambda_E$ with E as above, $|E| \geq 2$, s.t.
Definitions: Regular and Almost Regular Relations

For a set E of equiv rels on A, with exactly m blocks each, let

$$
\lambda_E := \bigcap_{\theta \in E} \lambda_{\theta}
$$

where

$$
\lambda_{\theta} := \{ a \in A^m : a_i \theta a_j \text{ for some } i \neq j \}.
$$

Definition

An m-ary relation ρ on A is

- **regular** if $3 \leq m \leq k$ and $\rho = \lambda_E$ with E as above s.t. $\bigcap_{\ell=1}^{r} B_\ell \neq \emptyset$ for any blocks B_ℓ of θ_ℓ.

- **almost regular** if

 either $3 \leq m \leq k - 2$ and $\rho = \lambda_E$ with E as above, $|E| \geq 2$, s.t.

 $B_j \cap B_\ell = \emptyset$ for nonsingl. blocks B_j of θ_j, B_ℓ of θ_ℓ with $j \neq \ell$;

 or

 $m = k - 1 \geq 3$ and ρ is totally reflexive, totally symmetric, $\rho \not\in \text{Centr} \cup \text{Reg}^*$.

Á. Szendrei
Definitions: Regular and Almost Regular Relations

For a set E of equiv rels on A, with exactly m blocks each, let

$$\lambda_E := \bigcap_{\theta \in E} \lambda_\theta$$

where

$$\lambda_\theta := \{ \bar{a} \in A^m : a_i \theta a_j \text{ for some } i \neq j \}.$$

Definition

An m-ary relation ρ on A is

- **regular** if $3 \leq m \leq k$ and $\rho = \lambda_E$ with E as above s.t.
 $$\bigcap_{\ell=1}^r B_\ell \neq \emptyset$$
 for any blocks B_ℓ of θ_ℓ.

- **almost regular** if either $3 \leq m \leq k - 2$ and $\rho = \lambda_E$ with E as above, $|E| \geq 2$, s.t.
 $$B_j \cap B_\ell = \emptyset$$
 for nonsingl. blocks B_j of θ_j, B_ℓ of θ_ℓ with $j \neq \ell$;
 or $m = k - 1 \geq 3$ and
Definitions: Regular and Almost Regular Relations

For a set E of equiv rels on A, with exactly m blocks each, let

$$\lambda_E := \bigcap_{\theta \in E} \lambda_\theta$$

where

$$\lambda_\theta := \{ \overline{a} \in A^m : a_i \theta a_j \text{ for some } i \neq j \}.$$

Definition

An m-ary relation ρ on A is

- **regular** if $3 \leq m \leq k$ and $\rho = \lambda_E$ with E as above s.t.
 - $\bigcap_{\ell=1}^{r} B_\ell \neq \emptyset$ for any blocks B_ℓ of θ_ℓ.

- **almost regular** if
 - either $3 \leq m \leq k - 2$ and $\rho = \lambda_E$ with E as above, $|E| \geq 2$, s.t.
 - $B_j \cap B_\ell = \emptyset$ for nonsingl. blocks B_j of θ_j, B_ℓ of θ_ℓ with $j \neq \ell$;
 - or $m = k - 1 \geq 3$ and
 - ρ is totally reflexive, totally symmetric, $\rho \notin \text{Centr} \cup \text{Reg}^*$.
The Maximal Subclones of \mathcal{U}, $S^- \subseteq \mathcal{U} \subseteq S$

$S^- \subseteq \mathcal{U} \subseteq S \implies \mathcal{U} = S[G]$ for some subgroup $G \subseteq \text{Sym}_A$

Corollary

Every maximal subclone of $S[G]$ is of the form

1. $S[H]$ for a maximal subgroup H of G, or
2. $S \cap \{\rho\} \perp$ for some

$$\rho \in \text{BPO} \cup \text{Eq} \cup \text{Centr} \cup \text{Reg}^* \cup \begin{cases} \text{aCentr} \cup \text{aReg} & \text{if } k \geq 4, \\ \{\beta\} & \text{if } k = 3 \end{cases}$$

such that $G \subseteq \{\rho\} \perp$.

For some $\rho \in \text{BPO}, \text{Centr}, \text{Reg}^*$ in (2), $S \cap \{\rho\} \perp$ is not max in $S[G]$.