Approximate or non-continuous satisfaction of identities

W. Taylor

UH, Manoa Valley, Hawai‘i

March 3, 2012
Six sections of the talk.

Basics

Some calculations on approximate satisfaction. $\lambda(A, \Sigma)$.

Precise definitions for discontinuous satisfaction. $\mu_n(A, \Sigma)$.

An example: $\mu_1(A, \Sigma) = 0; \mu_2(A, \Sigma) = \text{diam}(A)$.

Some further results

Algorithmic questions about λ and μ_n.
Compatibility: $A \models \Sigma$
Given a topological space A and a set Σ of equations in operation symbols F_t, we write

$$A \models \Sigma,$$

and say that A and Σ are compatible, iff there exist continuous operations \overline{F}_t on A satisfying Σ.

Examples: Groups on S^1, S^3 and \mathbb{R}, various matrix groups, many H-spaces, a lattice on $[0,1]$, a ternary median operation on Y, simple Σ on absolute-retract A, Sets $\left[\begin{array}{c} n \end{array} \right]$ on any space A^n, a unital ring on $S^1 \times \mathbb{Z}$, a Boolean algebra on $\{0,1\}^{\aleph_0}$. Even, for any A and Σ, the Swierczkowski free algebra $F_A(\Sigma)$ (whose universe is a superset of A).
Given a topological space A and a set Σ of equations in operation symbols F_t, we write

$$A \models \Sigma,$$

and say that A and Σ are compatible, iff there exist continuous operations \overline{F}_t on A satisfying Σ.

Examples: Groups on S^1, S^3 and \mathbb{R},
Compatibility: $A \models \Sigma$

Given a topological space A and a set Σ of equations in operation symbols F_t, we write

$$A \models \Sigma,$$

and say that A and Σ are compatible, iff there exist continuous operations \overline{F}_t on A satisfying Σ.

Examples: Groups on S^1, S^3 and \mathbb{R}, various matrix groups,
Given a *topological space* A and a set Σ of equations in operation symbols F_t, we write

$$A \models \Sigma,$$

and say that A and Σ are *compatible*, iff there exist *continuous* operations \overline{F}_t on A satisfying Σ.

Examples: Groups on S^1, S^3 and \mathbb{R}, various matrix groups, many H-spaces,
Compatibility: $A \models \Sigma$

Given a *topological space* A and a set Σ of equations in operation symbols F_t, we write

$$A \models \Sigma,$$

and say that A and Σ are *compatible*, iff there exist *continuous* operations \overline{F}_t on A satisfying Σ.

Examples: Groups on S^1, S^3 and \mathbb{R}, various matrix groups, many H-spaces, a lattice on $[0, 1]$,
Compatibility: \(A \models \Sigma \)

Given a *topological space* \(A \) and a set \(\Sigma \) of equations in operation symbols \(F_t \), we write

\[
A \models \Sigma,
\]

and say that \(A \) and \(\Sigma \) are *compatible*, iff there exist *continuous* operations \(\overline{F}_t \) on \(A \) satisfying \(\Sigma \).

Examples: Groups on \(S^1 \), \(S^3 \) and \(\mathbb{R} \), various matrix groups, many H-spaces, a lattice on \([0, 1]\), a ternary median operation on \(Y \),
Compatibility: $A \models \Sigma$

Given a *topological space* A and a set Σ of equations in operation symbols F_t, we write

$$A \models \Sigma,$$

and say that A and Σ are *compatible*, iff there exist *continuous* operations \overline{F}_t on A satisfying Σ.

Examples: Groups on S^1, S^3 and \mathbb{R}, various matrix groups, many H-spaces, a lattice on $[0, 1]$, a ternary median operation on Y, simple Σ on absolute-retract A, Sets $[n]$ on any space A, a unital ring on $S^1 \times \mathbb{Z}$, a Boolean algebra on $\{0, 1\}^{\aleph_0}$. Even, for any A and Σ, the ´Swierczkowski free algebra $F_A(\Sigma)$ (whose universe is a superset of A).
Compatibility: $A \models \Sigma$

Given a topological space A and a set Σ of equations in operation symbols F_t, we write

$$A \models \Sigma,$$

and say that A and Σ are compatible, iff there exist continuous operations $\overline{F_t}$ on A satisfying Σ.

Examples: Groups on S^1, S^3 and \mathbb{R}, various matrix groups, many H-spaces, a lattice on $[0, 1]$, a ternary median operation on Y, simple Σ on absolute-retract A, Sets$^{[n]}$ on any space A^n, etc.
Given a *topological space* A and a set Σ of equations in operation symbols F_t, we write

$$A \models \Sigma,$$

and say that A and Σ are *compatible*, iff there exist *continuous* operations \overline{F}_t on A satisfying Σ.

Examples: Groups on S^1, S^3 and \mathbb{R}, various matrix groups, many H-spaces, a lattice on $[0, 1]$, a ternary median operation on Y, simple Σ on absolute-retract A, Sets$^{[n]}$ on any space A^n, a unital ring on $S^1 \times \mathbb{Z}$,
Compatibility: $A \models \Sigma$

Given a topological space A and a set Σ of equations in operation symbols F_t, we write

$$A \models \Sigma,$$

and say that A and Σ are compatible, iff there exist continuous operations \overline{F}_t on A satisfying Σ.

Examples: Groups on S^1, S^3 and \mathbb{R}, various matrix groups, many H-spaces, a lattice on $[0, 1]$, a ternary median operation on Y, simple Σ on absolute-retract A, Sets$^{[n]}$ on any space A^n, a unital ring on $S^1 \times \mathbb{Z}$, a Boolean algebra on $\{0, 1\}^{\aleph_0}$.
Compatibility: \(A \models \Sigma \)

Given a topological space \(A \) and a set \(\Sigma \) of equations in operation symbols \(F_t \), we write

\[
A \models \Sigma,
\]

and say that \(A \) and \(\Sigma \) are compatible, iff there exist continuous operations \(F_t \) on \(A \) satisfying \(\Sigma \).

Examples: Groups on \(S^1 \), \(S^3 \) and \(\mathbb{R} \), various matrix groups, many \(H \)-spaces, a lattice on \([0, 1]\), a ternary median operation on \(Y \), simple \(\Sigma \) on absolute-retract \(A \), \(\text{Sets}^{[n]} \) on any space \(A^n \), a unital ring on \(S^1 \times \mathbb{Z} \), a Boolean algebra on \(\{0, 1\}^{\aleph_0} \). Even, for any \(A \) and \(\Sigma \), the Świerczkowski free algebra \(F_A(\Sigma) \) (whose universe is a superset of \(A \)).
A \models \Sigma is a mysterious, sparse relation

Experientially, A \models \Sigma occurs only sporadically, whereas it can in many cases be proved false. But A \not\models \Sigma does not seem to have any uniform method of proof. E.g. the sphere $S^n \models \Sigma$ only for trivial Σ or for $n = 1, 3, 7$. (Hard algebraic topology to prove this.) There is no algorithm that settles $R \models \Sigma$ for finite Σ. (Uses Matiasevich solution of Hilbert's Tenth Problem.) Thus \models is not too sparse.
$A \models \Sigma$ is a mysterious, sparse relation

- Experientially, $A \models \Sigma$ occurs only sporadically, whereas it can in many cases be proved false.
Experientially, $A \models \Sigma$ occurs only sporadically, whereas it can in many cases be proved false.

But $A \not\models \Sigma$ does not seem to have any uniform method of proof.
$A \models \Sigma$ is a mysterious, sparse relation

- Experientially, $A \models \Sigma$ occurs only sporadically, whereas it can in many cases be proved false.
- But $A \not\models \Sigma$ does not seem to have any uniform method of proof.
- E.g. the sphere $S^n \models \Sigma$ only for trivial Σ or for $n = 1, 3, 7$. (Hard algebraic topology to prove this.)
A $\models \Sigma$ is a mysterious, sparse relation

- Experientially, $A \models \Sigma$ occurs only sporadically, whereas it can in many cases be proved false.
- But $A \not\models \Sigma$ does not seem to have any uniform method of proof.
- E.g. the sphere $S^n \models \Sigma$ only for trivial Σ or for $n = 1, 3, 7$. (Hard algebraic topology to prove this.)
- There is no algorithm that settles $\mathbb{R} \models \Sigma$ for finite Σ. (Uses Matiasevich solution of Hilbert's Tenth Problem.) Thus \models is not too sparse.
Relaxing the demands of $A \models \Sigma$.
Relaxing the demands of $A \models \Sigma$.

“$A \models \Sigma$” demands operations \overline{F}_t that satisfy Σ exactly and are continuous.
Relaxing the demands of $A \models \Sigma$.

“$A \models \Sigma$” demands operations \bar{F}_t that satisfy Σ exactly and are continuous. We can relax those demands in two ways:
Relaxing the demands of $A \models \Sigma$.

“$A \models \Sigma$” demands operations \bar{F}_t that satisfy Σ exactly and are continuous. We can relax those demands in two ways: we can consider approximate satisfaction, and
Relaxing the demands of $A \models \Sigma$.

“A $\models \Sigma$” demands operations \bar{F}_t that satisfy Σ exactly and are continuous. We can relax those demands in two ways: we can consider approximate satisfaction, and we can consider approximate continuity.
Approximate replacements for $A \models \Sigma$
Approximate replacements for $A \models \Sigma$

For (A, d) a metric space, and $\eta > 0$

$$A \models_{\eta} \Sigma,$$

will mean that there exist *continuous* operations F_t on A satisfying Σ *within* η. (Of course we may also study $A \models_{\epsilon} \eta \Sigma$!)
Approximate replacements for $A \models \Sigma$

For (A, d) a metric space, and $\eta > 0$

$$A \models_{\eta} \Sigma,$$

will mean that there exist continuous operations F_t on A satisfying Σ within η. For $\varepsilon > 0$,

$$A \models^{\varepsilon} \Sigma,$$

will mean that there exist operations F_t on A satisfying Σ and whose discontinuities are no greater than ε. (Precise definition later.)
Approximate replacements for $A \models \Sigma$

For (A, d) a metric space, and $\eta > 0$

$$A \models_{\eta} \Sigma,$$

will mean that there exist continuous operations $\overline{F_t}$ on A satisfying Σ within η. For $\varepsilon > 0$,

$$A \models^{\varepsilon} \Sigma,$$

will mean that there exist operations $\overline{F_t}$ on A satisfying Σ and whose discontinuities are no greater than ε. (Precise definition later.)

(Of course we may also study $A \models^{\varepsilon}_{\eta} \Sigma$!)
Six sections of the talk.

Basics

Some calculations on approximate satisfaction. $\lambda(A, \Sigma)$.

Precise definitions for discontinuous satisfaction. $\mu_n(A, \Sigma)$.

An example: $\mu_1(A, \Sigma) = 0$; $\mu_2(A, \Sigma) = \text{diam}(A)$.

Some further results

Algorithmic questions about λ and μ_n.
Some review of $A \models_{\eta} \Sigma$

Our long paper, "Approximate satisfaction of identities," deals with \models_{η}, and we have spoken on it before, but we will sketch one result for later comparison with \models_{ε}.

For arbitrary metric space A and equations Σ, we define the real number (or $+\infty$):

$$\lambda(A, \Sigma) = \inf\{\eta : A \models \eta \Sigma\}.$$
Our long paper, “Approximate satisfaction of identities,” deals with \models_η, and we have spoken on it before, but we will sketch one result for later comparison with \models_ε.
Our long paper, “Approximate satisfaction of identities,” deals with \models_η, and we have spoken on it before, but we will sketch one result for later comparison with \models_ε.

For arbitrary metric space A and equations Σ, we define the real number (or $+\infty$):

$$\lambda(A, \Sigma) = \inf \{ \eta : A \models_\eta \Sigma \}.$$
Σ saying, “G is a one-one binary operation on A.”
Σ saying, “\(\overline{G} \) is a one-one binary operation on \(A \).”

Σ will be this pair of equations:

\[
F_0(G(x_0, x_1)) \approx x_0, \quad F_1(G(x_0, x_1)) \approx x_1.
\]
\(\Sigma \) saying, "\(\overline{G} \) is a one-one binary operation on \(A \)."

\(\Sigma \) will be this pair of equations:

\[
F_0(G(x_0, x_1)) \approx x_0, \quad F_1(G(x_0, x_1)) \approx x_1.
\]

A model of \(\Sigma \) has

\[
A^2 \xrightarrow{\overline{G}} A \xrightarrow{\overline{F}} A^2 = \text{identity},
\]
Σ saying, “\(\overline{G} \) is a one-one binary operation on \(A \).”

\[\Sigma \] will be this pair of equations:

\[
F_0(G(x_0, x_1)) \approx x_0, \quad F_1(G(x_0, x_1)) \approx x_1.
\]

A model of \(\Sigma \) has

\[
A^2 \xrightarrow{\overline{G}} A \xrightarrow{\overline{F}} A^2 = \text{identity},
\]

where \(\overline{F} \) has \(\overline{F}_0 \) and \(\overline{F}_1 \) as its component functions.
Σ saying, “\overline{G} is a one-one binary operation on $A.$”

Σ will be this pair of equations:

$$F_0(G(x_0, x_1)) \approx x_0, \quad F_1(G(x_0, x_1)) \approx x_1.$$

A model of Σ has

$$A^2 \xrightarrow{\overline{G}} A \xrightarrow{\overline{F}} A^2 = \text{identity},$$

where \overline{F} has \overline{F}_0 and \overline{F}_1 as its component functions. Thus under exact satisfaction, \overline{G} must be one-one and \overline{F} must be onto.
\(\lambda([0, 1], \Sigma) = 0.5 \)
First, an easy exercise yields $\lambda([0, 1], \Sigma) \leq 0.5$.

For the opposite inequality, we consider a topolgical algebra $(A; \overline{G}, \overline{F_0}, \overline{F_1})$ modeling Σ within K; we will show that $K \geq 0.5$.

Let $\{a_0, a_1\} = \{b_0, b_1\} = \{0, 1\}$. Compare the four values $G(a_i, b_j)$; w.l.o.g. $G(a_0, b_0)$ is the smallest. Again w.l.o.g. we have $G(a_1, b_0) \leq G(a_0, b_1)$. In other words, $G(a_0, b_0) \leq G(a_1, b_0) \leq G(a_0, b_1)$. We consider the real function $H(x) = G(a_0, x)$. By the IVT there exists e with $G(a_0, e) = G(a_1, b_0)$.

$\lambda([0, 1], \Sigma) = 0.5$
First, an easy exercise yields $\lambda([0, 1], \Sigma) \leq 0.5$.

For the opposite inequality, we consider a topological algebra $(A; \overline{G}, \overline{F}_0, \overline{F}_1)$ modeling Σ within K; we will show that $K \geq 0.5$.

Let $\{a_0, a_1\} = \{b_0, b_1\} = \{0, 1\}$. Compare the four values $\overline{G}(a_i, b_j)$; w.l.o.g. $\overline{G}(a_0, b_0)$ is the smallest.
\[\lambda([0, 1], \Sigma) = 0.5 \]

First, an easy exercise yields \(\lambda([0, 1], \Sigma) \leq 0.5. \)

For the opposite inequality, we consider a topological algebra \((A; \tilde{G}, \tilde{F}_0, \tilde{F}_1)\) modeling \(\Sigma\) within \(K\); we will show that \(K \geq 0.5.\)

Let \(\{a_0, a_1\} = \{b_0, b_1\} = \{0, 1\}\). Compare the four values \(\tilde{G}(a_i, b_j)\); w.l.o.g. \(\tilde{G}(a_0, b_0)\) is the smallest. Again w.l.o.g. we have \(\tilde{G}(a_1, b_0) \leq \tilde{G}(a_0, b_1)\). In other words,

\[
\tilde{G}(a_0, b_0) \leq \tilde{G}(a_1, b_0) \leq \tilde{G}(a_0, b_1).
\]
First, an easy exercise yields $\lambda([0, 1], \Sigma) \leq 0.5$.

For the opposite inequality, we consider a topological algebra $(A; \overline{G}, F_0, F_1)$ modeling Σ within K; we will show that $K \geq 0.5$.

Let $\{a_0, a_1\} = \{b_0, b_1\} = \{0, 1\}$. Compare the four values $\overline{G}(a_i, b_j)$; w.l.o.g. $\overline{G}(a_0, b_0)$ is the smallest. Again w.l.o.g. we have $\overline{G}(a_1, b_0) \leq \overline{G}(a_0, b_1)$. In other words,

$$\overline{G}(a_0, b_0) \leq \overline{G}(a_1, b_0) \leq \overline{G}(a_0, b_1).$$

We consider the real function $\overline{H}(x) = \overline{G}(a_0, x)$.
First, an easy exercise yields \(\lambda([0, 1], \Sigma) \leq 0.5 \).

For the opposite inequality, we consider a topological algebra \((A; \overline{G}, F_0, F_1)\) modeling \(\Sigma\) within \(K\); we will show that \(K \geq 0.5\).

Let \(\{a_0, a_1\} = \{b_0, b_1\} = \{0, 1\}\). Compare the four values \(\overline{G}(a_i, b_j)\); w.l.o.g. \(\overline{G}(a_0, b_0)\) is the smallest. Again w.l.o.g. we have \(\overline{G}(a_1, b_0) \leq \overline{G}(a_0, b_1)\). In other words,

\[
\overline{G}(a_0, b_0) \leq \overline{G}(a_1, b_0) \leq \overline{G}(a_0, b_1).
\]

We consider the real function \(\overline{H}(x) = \overline{G}(a_0, x)\). By the IVT there exists \(e\) with

\[
\overline{G}(a_0, e) = \overline{G}(a_1, b_0).
\]
\(\lambda([0, 1], \Sigma) = 0.5 \), continued

To repeat, we now have \(e \) with

\[
\overline{G}(a_0, e) = \overline{G}(a_1, b_0).
\]

From the approximate validity of \(\Sigma \), we now calculate

\[
a_0 \approx F_0(\overline{G}(a_0, e)) = F_0(\overline{G}(a_1, b_0)) \approx a_1.
\]
To repeat, we now have \(e \) with

\[
\overline{G}(a_0, e) = \overline{G}(a_1, b_0).
\]

From the approximate validity of \(\Sigma \), we now calculate

\[
a_0 \approx \overline{F}_0(\overline{G}(a_0, e)) = \overline{F}_0(\overline{G}(a_1, b_0)) \approx a_1.
\]

Since \(\{a_0, a_1\} = \{0, 1\} \), we now have the desired conclusion that

\[
1 = d(a_0, a_1) \leq 2K.
\]
\[\lambda([0, 1]^2, \Sigma) = 0.5; \text{ not a topological invariant} \]
\(\lambda([0, 1]^2, \Sigma) = 0.5; \) not a topological invariant

\[\lambda([0, 1]^2, \Sigma) = 0.5, \text{ not much more difficult (omitted)}. \]
\[\lambda([0, 1]^2, \Sigma) = 0.5; \text{ not a topological invariant} \]

\[\lambda([0, 1]^2, \Sigma) = 0.5, \text{ not much more difficult (omitted)}. \]

Given real \(\eta > 0 \), we construct a unit-diameter metric \(d \) for \([0, 1]^2\) such that \(\lambda(([0, 1]^2, d), \Sigma) \leq \eta. \)
\(\lambda([0, 1]^2, \Sigma) = 0.5; \) not a topological invariant

\[\lambda([0, 1]^2, \Sigma) = 0.5, \text{ not much more difficult (omitted)}. \]

Given real \(\eta > 0 \), we construct a unit-diameter metric \(d \) for \([0, 1]^2\) such that \(\lambda(([0, 1]^2, d), \Sigma) \leq \eta \).

We replace \([0, 1]^2\) by \(B = [0, \sqrt{1 - \eta^2}] \times [0, \eta] \), while taking \(d \) to be the Euclidean metric. Clearly \(B \cong [0, 1]^2 \), and moreover \(B \) has unit diameter.
\(\lambda([0, 1]^2, \Sigma) = 0.5; \) not a topological invariant

\(\lambda([0, 1]^2, \Sigma) = 0.5, \) not much more difficult (omitted).

Given real \(\eta > 0,\) we construct a unit-diameter metric \(d\) for \([0, 1]^2\) such that \(\lambda(([0, 1]^2, d), \Sigma) \leq \eta.\)

We replace \([0, 1]^2\) by \(B = [0, \sqrt{1-\eta^2}] \times [0, \eta],\) while taking \(d\) to be the Euclidean metric. Clearly \(B \cong [0, 1]^2,\) and moreover \(B\) has unit diameter. For an upper estimate on \(\lambda((B, d), \Sigma),\) we define these three operations on \(B:\)

\[
\begin{align*}
\overline{G}((a_0, a_1), (b_0, b_1)) &= (a_0, b_0/K) \\
\overline{F}_0(a_0, a_1) &= (a_0, 0) \\
\overline{F}_1(a_0, a_1) &= (Ka_1, 0).
\end{align*}
\]

where \(K = \sqrt{1-\eta^2}/\eta.\)
We now calculate

\[
\bar{F}_0(\bar{G}((a_0, a_1), (b_0, b_1))) = (a_0, 0)
\]

\[
d((a_0, a_1), \bar{F}_0(\bar{G}((a_0, a_1), (b_0, b_1)))) = d((a_0, a_1), (a_0, 0)) \\
\leq \eta.
\]

Thus \(\bar{F}_0, \bar{F}_1\) and \(\bar{G}\) satisfy \(\bar{F}_0(\bar{G}(x_0, x_1)) \approx x_0\) within \(\eta\) on \((B, d)\).
We now calculate

\[
\overline{F}_0(\overline{G}((a_0, a_1), (b_0, b_1))) = (a_0, 0)
\]

\[
d((a_0, a_1), \overline{F}_0(\overline{G}((a_0, a_1), (b_0, b_1)))) = d((a_0, a_1), (a_0, 0)) \leq \eta.
\]

Thus \(\overline{F}_0, \overline{F}_1\) and \(\overline{G}\) satisfy \(\overline{F}_0(\overline{G}(x_0, x_1)) \approx x_0\) within \(\eta\) on \((B, d)\). The approximate satisfaction of \(\overline{F}_1(\overline{G}(x_0, x_1)) \approx x_1\) is handled similarly. Thus

\[
\lambda((B, d), \Sigma) \leq \eta.
\]
Six sections of the talk.

Basics

Some calculations on approximate satisfaction. \(\lambda(A, \Sigma) \).

Precise definitions for discontinuous satisfaction. \(\mu_n(A, \Sigma) \).

An example: \(\mu_1(A, \Sigma) = 0; \mu_2(A, \Sigma) = \text{diam}(A) \).

Some further results

Algorithmic questions about \(\lambda \) and \(\mu_n \).
Let \((A,d),(B,e)\) be metric spaces. Given \(F:B \to A\) (not necessarily continuous) and \(\delta, \varepsilon > 0\), we say that \(F\) is \((\delta, \varepsilon)\)-constrained if it satisfies: for all \(b, b' \in B\), if \(e(b, b') < \delta\), then \(d(F(b), F(b')) < \varepsilon\).

(Uniform continuity rephrased: for every \(\varepsilon > 0\) there exists \(\delta > 0\) so that \(F\) is constrained by \((\delta, \varepsilon)\).)

We say that \(F\) is \(n\)-constrained by \((\delta_0, \delta_n)\) iff there exist \(0 < \delta_0 \leq \delta_1 \leq \cdots \leq \delta_n\) such that \(F\) is \((\delta_0, \delta_1)\)-constrained and \((\delta_1, \delta_2)\)-constrained, and so on, up to \((\delta_{n-1}, \delta_n)\)-constrained.
(δ, ε)-constraints.

Let (A, d) and (B, e) be metric spaces.
Let \((A, d)\) and \((B, e)\) be metric spaces.

Given \(\overline{F} : B \rightarrow A\) (not necessarily continuous) and \(\delta, \varepsilon > 0\), we say that \(\overline{F}\) is \((\delta, \varepsilon)\)-constrained if it satisfies: for all \(b, b' \in B\), if \(e(b, b') < \delta\), then \(d(\overline{F}(b), \overline{F}(b')) < \varepsilon\).
Let \((A, d)\) and \((B, e)\) be metric spaces.

Given \(\overline{F} : B \rightarrow A\) (not necessarily continuous) and \(\delta, \varepsilon > 0\), we say that \(\overline{F}\) is \((\delta, \varepsilon)\)-constrained it satisfies: for all \(b, b' \in B\), if \(e(b, b') < \delta\), then \(d(\overline{F}(b), \overline{F}(b')) < \varepsilon\).

(Uniform continuity rephrased: for every \(\varepsilon > 0\) there exists \(\delta > 0\) so that \(\overline{F}\) is constrained by \((\delta, \varepsilon)\).)
(δ, ε)-constraints.

Let (A, d) and (B, e) be metric spaces.

Given \(F : B \rightarrow A \) (not necessarily continuous) and \(δ, ε > 0 \), we say that \(F \) is (\(δ, ε \))-constrained it satisfies: for all \(b, b' \in B \), if \(e(b, b') < δ \), then \(d(F(b), F(b')) < ε \).

(Uniform continuity rephrased: for every \(ε > 0 \) there exists \(δ > 0 \) so that \(F \) is constrained by (\(δ, ε \)).

We say that \(F \) is \(n \)-constrained by (\(δ_0, δ_n \)) iff there exist \(0 < δ_0 \leq δ_1 \leq \cdots \leq δ_n \) such that \(F \) is (\(δ_0, δ_1 \))-constrained and (\(δ_1, δ_2 \))-constrained, and so on, up to (\(δ_{n-1}, δ_n \))-constrained.
Lemma
Suppose that f maps a convex subset of \mathbb{R} into \mathbb{R}, and that f is (δ, ε)-constrained with $\delta, \varepsilon > 0$. If $a < c$ and s is between $f(a)$ and $f(c)$, then there exists b with $a \leq b \leq c$ and with $d(f(b), s) < \varepsilon/2$.
Definitions of \models^ε_n and $\mu_n(A, \Sigma)$

$A \models^\varepsilon_n \Sigma$
Definitions of \models_n^ε and $\mu_n(A, \Sigma)$

$A \models_n^\varepsilon \Sigma$

means that there exists an algebra $A = (A, \overline{F}_t)_{t \in T}$ modeling Σ and a real number $\delta_0 > 0$ such that each \overline{F}_t is n-constrained by (δ_0, ε).
Definitions of \models_n^ε and $\mu_n(A, \Sigma)$

$A \models_n^\varepsilon \Sigma$

means that there exists an algebra $A = (A, \overline{F}_t)_{t \in T}$ modeling Σ and a real number $\delta_0 > 0$ such that each \overline{F}_t is n-constrained by (δ_0, ε).

We define

$$\mu_n(A, \Sigma) = \inf \{ \varepsilon : A \models_n^\varepsilon \Sigma \}. $$
Definitions of $\models_{\varepsilon}^{n}$ and $\mu_{n}(A, \Sigma)$

$A \models_{\varepsilon}^{n} \Sigma$

means that there exists an algebra $A = (A, \overline{F}_{t})_{t \in T}$ modeling Σ and a real number $\delta_{0} > 0$ such that each \overline{F}_{t} is n-constrained by $(\delta_{0}, \varepsilon)$.

We define

$$\mu_{n}(A, \Sigma) = \inf \{ \varepsilon : A \models_{\varepsilon}^{n} \Sigma \}.$$

It is not hard to see that

$$0 \leq \mu_{1}(A, \Sigma) \leq \mu_{2}(A, \Sigma) \leq \cdots \leq \text{diam}(A).$$
We repeat the definition:

\[A \models^\varepsilon_n \Sigma \]

means that there exists an algebra \(A = (A, \overline{F}_t)_{t \in T} \) modeling \(\Sigma \) and a real number \(\delta_0 > 0 \) such that each \(\overline{F}_t \) is \(n \)-constrained by \((\delta_0, \varepsilon) \).
We repeat the definition:

\[A \models^n_{\varepsilon} \Sigma \]

means that there exists an algebra \(\mathbf{A} = (A, \overline{F}_t)_{t \in T} \) modeling \(\Sigma \) and a real number \(\delta_0 > 0 \) such that each \(\overline{F}_t \) is \(n \)-constrained by \((\delta_0, \varepsilon) \).

Thus if \(A \models \Sigma \), then \(A \models^n_{\varepsilon} \Sigma \) for every \(n \) and every \(\varepsilon > 0 \),
Connection of \models^n_ε and $\mu_n(A, \Sigma)$ with $A \models \Sigma$

We repeat the definition:

$$A \models^n_\varepsilon \Sigma$$

means that there exists an algebra $A = (A, \bar{F}_t)_{t \in T}$ modeling Σ and a real number $\delta_0 > 0$ such that each \bar{F}_t is n-constrained by (δ_0, ε).

Thus if $A \models \Sigma$, then $A \models^n_\varepsilon \Sigma$ for every n and every $\varepsilon > 0$, and hence

$$\mu_n(A, \Sigma) = \inf \{ \varepsilon : A \models^n_\varepsilon \Sigma \} = 0$$

for every n.
Six sections of the talk.

Basics

Some calculations on approximate satisfaction. $\lambda(A, \Sigma)$.

Precise definitions for discontinuous satisfaction. $\mu_n(A, \Sigma)$.

An example: $\mu_1(A, \Sigma) = 0; \mu_2(A, \Sigma) = \text{diam}(A)$.

Some further results

Algorithmic questions about λ and μ_n.
Our first Σ is taken as before: succinctly, it says that $A_2 \xrightarrow{G} A_F \xrightarrow{} A_2 = \text{identity}$. So let F be a Peano curve: continuous from $[0,1]$ onto $[0,1]$, and let G be any left-inverse to F. (G is perforce discontinuous.) For arbitrary $\varepsilon > 0$, define functions F' and G' via $G'(a_0,b_0) = \varepsilon G(a_0,b_0)$; $F'(a) = F(1 \wedge (a/\varepsilon))$. Now the discontinuities of G' are no larger than ε, and F' remains continuous, while F' and G' still satisfy Σ. Thus $A_1 = \varepsilon 1$ for every $\varepsilon > 0$; hence $\mu_1([0,1], \Sigma) = 0$.

$\mu_1([0,1], \Sigma) = 0$ for $\Sigma = \text{injective binary}$
Our first Σ is taken as before: succinctly, it says that
$A^2 \xrightarrow{\overline{G}} A \xrightarrow{\overline{F}} A^2 = \text{identity}$.

\[
\mu_1([0, 1], \Sigma) = 0 \quad \text{for } \Sigma = \text{injective binary}
\]
Our first Σ is taken as before: succinctly, it says that
\[A^2 \xrightarrow{\bar{G}} A \xrightarrow{\bar{F}} A^2 = \text{identity}. \]

So let \bar{F} be a Peano curve: continuous from $[0, 1]$ \textbf{onto} $[0, 1]^2$, and let \bar{G} be any left-inverse to \bar{F}.
Our first Σ is taken as before: succinctly, it says that
$A^2 \xrightarrow{\bar{G}} A \xrightarrow{\bar{F}} A^2 = \text{identity}.$

So let \bar{F} be a Peano curve: continuous from $[0, 1]$ onto $[0, 1]^2$, and let \bar{G} be any left-inverse to \bar{F}. (\bar{G} is perforce discontinuous.) For arbitrary $\varepsilon > 0$, define functions F' and G' via

$$G'(a_0, b_0) = \varepsilon \bar{G}(a_0, b_0); \quad F'(a) = \bar{F}(1 \wedge (a/\varepsilon)).$$
\[\mu_1([0, 1], \Sigma) = 0 \quad \text{for } \Sigma = \text{injective binary} \]

Our first \(\Sigma \) is taken as before: succinctly, it says that
\[
A^2 \xrightarrow{\overline{G}} A \xrightarrow{\overline{F}} A^2 = \text{identity}.
\]

So let \(\overline{F} \) be a Peano curve: continuous from \([0, 1]\) onto \([0, 1]^2\), and let \(\overline{G} \) be any left-inverse to \(\overline{F} \). (\(\overline{G} \) is perforce discontinuous.) For arbitrary \(\varepsilon > 0 \), define functions \(F' \) and \(G' \) via

\[
G'(a_0, b_0) = \varepsilon \overline{G}(a_0, b_0); \quad F'(a) = \overline{F}(1 \wedge (a/\varepsilon)).
\]

Now the discontinuities of \(G' \) are no larger than \(\varepsilon \), and \(F' \) remains continuous, while \(F' \) and \(G' \) still satisfy \(\Sigma \). Thus \(A \models_{\varepsilon} \) for every \(\varepsilon > 0 \); hence \(\mu_1([0, 1], \Sigma) = 0 \). \[\square\]
\[\mu_2([0, 1], \Sigma) = 1 \]
\[\mu_2([0, 1], \Sigma) = 1 \]

We consider \((A; \overline{G}, \overline{F}_0, \overline{F}_1)\) modeling \(\Sigma\), with the operations \((\delta_0, \delta_1)\)-constrained and \((\delta_1, \delta_2)\)-constrained. We will show that \(\delta_2 \geq 1\).
We consider \((A; \bar{G}, \bar{F}_0, \bar{F}_1)\) modeling \(\Sigma\), with the operations \((\delta_0, \delta_1)\)-constrained and \((\delta_1, \delta_2)\)-constrained. We will show that \(\delta_2 \geq 1\).

Let \(\{a_0, a_1\} = \{b_0, b_1\} = \{0, 1\}\). Compare the four values \(\bar{G}(a_i, b_j)\); w.l.o.g. \(\bar{G}(a_0, b_0)\) is the smallest.
We consider \((A; \overline{G}, F_0, F_1)\) modeling \(\Sigma\), with the operations \((\delta_0, \delta_1)\)-constrained and \((\delta_1, \delta_2)\)-constrained. We will show that \(\delta_2 \geq 1\).

Let \(\{a_0, a_1\} = \{b_0, b_1\} = \{0, 1\}\). Compare the four values \(\overline{G}(a_i, b_j)\); w.l.o.g. \(\overline{G}(a_0, b_0)\) is the smallest. Again w.l.o.g. we have \(\overline{G}(a_1, b_0) \leq \overline{G}(a_0, b_1)\). In other words,

\[
\overline{G}(a_0, b_0) \leq \overline{G}(a_1, b_0) \leq \overline{G}(a_0, b_1).
\]
\[\mu_2([0, 1], \Sigma) = 1 \]

We consider \((A; \overline{G}, \overline{F_0}, \overline{F_1})\) modeling \(\Sigma\), with the operations \((\delta_0, \delta_1)\)-constrained and \((\delta_1, \delta_2)\)-constrained. We will show that \(\delta_2 \geq 1\).

Let \(\{a_0, a_1\} = \{b_0, b_1\} = \{0, 1\}\). Compare the four values \(\overline{G}(a_i, b_j)\); w.l.o.g. \(\overline{G}(a_0, b_0)\) is the smallest. Again w.l.o.g. we have \(\overline{G}(a_1, b_0) \leq \overline{G}(a_0, b_1)\). In other words,

\[
\overline{G}(a_0, b_0) \leq \overline{G}(a_1, b_0) \leq \overline{G}(a_0, b_1).
\]

We consider the real function \(\overline{H}(x) = \overline{G}(a_0, x)\).
\(\mu_2([0, 1], \Sigma) = 1 \)

We consider \((A; \overline{G}, \overline{F}_0, \overline{F}_1)\) modeling \(\Sigma\), with the operations \((\delta_0, \delta_1)\)-constrained and \((\delta_1, \delta_2)\)-constrained. We will show that \(\delta_2 \geq 1\).

Let \(\{a_0, a_1\} = \{b_0, b_1\} = \{0, 1\}\). Compare the four values \(\overline{G}(a_i, b_j)\); w.l.o.g. \(\overline{G}(a_0, b_0)\) is the smallest. Again w.l.o.g. we have \(\overline{G}(a_1, b_0) \leq \overline{G}(a_0, b_1)\). In other words,

\[
\overline{G}(a_0, b_0) \leq \overline{G}(a_1, b_0) \leq \overline{G}(a_0, b_1).
\]

We consider the real function \(\overline{H}(x) = \overline{G}(a_0, x)\). By the Lemma (IVT), there exists \(e \in [0, 1]\) with

\[
d(\overline{G}(a_0, e), \overline{G}(a_1, b_0)) < \delta_1.
\]
$\mu_2([0, 1], \Sigma) = 1$, concluded

Repeat: $d(\overline{G}(a_0, e), \overline{G}(a_1, b_0)) < \delta_1$.

Thus $\mu_2([0, 1], \Sigma)$, being the infimum of such δ_2's, must be 1.
$\mu_2([0, 1], \Sigma) = 1$, concluded

Repeat: $d(\overline{G}(a_0, e), \overline{G}(a_1, b_0)) < \delta_1$.

Because $\{a_0, a_1\} = \{0, 1\}$, because of Σ, and because the function \overline{F}_0 is (δ_1, δ_2)-constrained, we now have:

$$1 = d(a_0, a_1) = d(\overline{F}_0(\overline{G}(a_0, e)), \overline{F}_0(\overline{G}(a_1, b_0))) \leq \delta_2.$$
$\mu_2([0, 1], \Sigma) = 1$, concluded

Repeat: $d(\overline{G}(a_0, e), \overline{G}(a_1, b_0)) < \delta_1$.

Because $\{a_0, a_1\} = \{0, 1\}$, because of Σ, and because the function F_0 is (δ_1, δ_2)-constrained, we now have:

$$1 = d(a_0, a_1) = d(F_0(\overline{G}(a_0, e)), F_0(\overline{G}(a_1, b_0))) \leq \delta_2.$$

Thus $\mu_2([0, 1], \Sigma)$, being the infimum of such δ_2’s, must be 1.
Six sections of the talk.

Basics

Some calculations on approximate satisfaction. $\lambda(A, \Sigma)$.

Precise definitions for discontinuous satisfaction. $\mu_n(A, \Sigma)$.

An example: $\mu_1(A, \Sigma) = 0$; $\mu_2(A, \Sigma) = \text{diam}(A)$.

Some further results

Algorithmic questions about λ and μ_n.
Some further results . . .

- $\mu_2([0, 1]^2, \text{same } \Sigma) = 1$ — uses Borsuk-Ulam Theorem.
Some further results . . .

- $\mu_2([0, 1]^2, \text{same } \Sigma) = 1$ — uses Borsuk-Ulam Theorem.
- $\mu_2(\mathbb{R}, \text{Groups } + x^n \approx 1) \geq \text{radius}(\mathbb{R})$.

(Here Y stands for a Y-shaped one-dimensional space with each arm of unit length.)
Some further results . . .

- $\mu_2([0, 1]^2, \text{same } \Sigma) = 1$ — uses Borsuk-Ulam Theorem.
- $\mu_2(\mathbb{R}, \text{Groups} + x^n \approx 1) \geq \text{radius}(\mathbb{R})$.
- $\mu_2([0, 1]^n, \text{Groups}) = \text{diameter}([0, 1]^n)$.
Some further results …

- $\mu_2([0,1]^2, \text{same } \Sigma) = 1$ — uses Borsuk-Ulam Theorem.
- $\mu_2(\mathbb{R}, \text{Groups } + x^n \approx 1) \geq \text{radius}(\mathbb{R})$.
- $\mu_2([0,1]^n, \text{Groups}) = \text{diameter}([0,1]^n)$.
- $\mu_3(Y, \text{Lattices}) \geq 0.5$.

(Here Y stands for a Y-shaped one-dimensional space with each arm of unit length.)
Spheres will be metrized proportional to great-circle distance, in such a way that antipodal points have distance 1.
Spheres will be metrized proportional to great-circle distance, in such a way that antipodal points have distance 1.

Here Σ stands for the equations defining a binary operation with left-zero and left-one, or defining a commutative idempotent binary operation, or defining a ternary majority operation.
Spheres will be metrized proportional to great-circle distance, in such a way that antipodal points have distance 1.

Here Σ stands for the equations defining a binary operation with left-zero and left-one, or defining a commutative idempotent binary operation, or defining a ternary majority operation.

$\mu_1(S^1, \Sigma) = 2/3.$
Spheres will be metrized proportional to great-circle distance, in such a way that antipodal points have distance 1.

Here Σ stands for the equations defining a binary operation with left-zero and left-one, or defining a commutative idempotent binary operation, or defining a ternary majority operation.

- $\mu_1(S^1, \Sigma) = 2/3$.
- $\mu_1(S^k, \Sigma) \geq 2/3$.
Spheres will be metrized proportional to great-circle distance, in such a way that antipodal points have distance 1.

Here Σ stands for the equations defining a binary operation with left-zero and left-one, or defining a commutative idempotent binary operation, or defining a ternary majority operation.

- $\mu_1(S^1, \Sigma) = \frac{2}{3}$.
- $\mu_1(S^k, \Sigma) \geq \frac{2}{3}$.

We will sketch the proof of this last result...
\(\mu_1(S^k, \Sigma) \geq 2/3; \quad \Sigma = \text{ternary majority.} \)
\[\mu_1(S^k, \Sigma) \geq 2/3; \quad \Sigma = \text{ternary majority.} \]

We show that if \(F \) is a majority operation on \(S^k \) that is \((\delta, 2/3)\)-constrained for some \(\delta > 0 \), then \(F \) can be deformed into a continuous majority operation \(G \). This would contradict the fact that \(S^k \not\models \Sigma \).
\(\mu_1(S^k, \Sigma) \geq 2/3; \quad \Sigma = \text{ternary majority.} \)

We show that if \(\overline{F} \) is a majority operation on \(S^k \) that is \((\delta, 2/3)\)-constrained for some \(\delta > 0 \), then \(\overline{F} \) can be deformed into a continuous majority operation \(\overline{G} \). This would contradict the fact that \(S^k \not\models \Sigma \). The non-existence of such a constrained operation is tantamount to the inequality \(\mu_1(S^k, \Sigma) \geq 2/3 \).
\[\mu_1(S^k, \Sigma) \geq 2/3; \quad \Sigma = \text{ternary majority}. \]

We show that if \(F \) is a majority operation on \(S^k \) that is \((\delta, 2/3)\)-constrained for some \(\delta > 0 \), then \(F \) can be deformed into a continuous majority operation \(G \). This would contradict the fact that \(S^k \not\models \Sigma \). The non-existence of such a constrained operation is tantamount to the inequality \(\mu_1(S^k, \Sigma) \geq 2/3 \).

Lemma

If \(F \) is a finite subset of \(S^k \) with \(\text{diameter}(F) < 2/3 \), then there is a convex subset \(A \) of \(S^k \) such that \(F \subseteq A \).
Recall that \overline{F} is a majority operation on S^k that is $(\delta, 2/3)$-constrained.
Recall that \overline{F} is a majority operation on S^k that is $(\delta, 2/3)$-constrained.

We begin with a triangulation of $(S^k)^3$ that contains sub-complexes triangulating $\{(x, x, z) : x, z \in S^k\}$ and so on, and such that each simplex has diameter $< \delta$.

$\mu_1(S^k, \text{Ternary majority}) \geq 2/3$, continued
Recall that \overline{F} is a majority operation on S^k that is $(\delta, 2/3)$-constrained.

We begin with a triangulation of $(S^k)^3$ that contains sub-complexes triangulating $\{(x, x, z) : x, z \in S^k\}$ and so on, and such that each simplex has diameter $< \delta$.

By the lemma, \overline{F} maps each simplex into a convex set K, which is a universal extensor in topology; i.e. maps into K can be extended continuously to larger sets. The desired map \overline{G} is then constructed one simplex at a time, by recursion on the simplex dimension.
Six sections of the talk.

Basics

Some calculations on approximate satisfaction. $\lambda(A, \Sigma)$.

Precise definitions for discontinuous satisfaction. $\mu_n(A, \Sigma)$.

An example: $\mu_1(A, \Sigma) = 0; \mu_2(A, \Sigma) = \text{diam}(A)$.

Some further results

Algorithmic questions about λ and μ_n.
Intractability of an algorithmic approach to compatibility.
Recall that $\mathbb{R} \models \Sigma$ is not a recursive (algorithmic) property of finite Σ.

In fact there is no space A for which $A \models \Sigma$ is known to be algorithmic (besides a few known spaces A where $A \models \Sigma$ iff Σ is essentially trivial). E.g. it remains unknown whether $[0,1] \models \Sigma$ is algorithmic.
Recall that $\mathbb{R} \models \Sigma$ is not a recursive (algorithmic) property of finite Σ.

In fact there is no space A for which $A \models \Sigma$ is known to be algorithmic (besides a few known spaces A where $A \models \Sigma$ iff Σ is essentially trivial).
Recall that $\mathbb{R} \models \Sigma$ is not a recursive (algorithmic) property of finite Σ.

In fact there is no space A for which $A \models \Sigma$ is known to be algorithmic (besides a few known spaces A where $A \models \Sigma$ iff Σ is essentially trivial).

E.g. it remains unknown whether $[0, 1] \models \Sigma$ is algorithmic.
Recall that $\mathbb{R} \models \Sigma$ is not a recursive (algorithmic) property of finite Σ.

In fact there is no space A for which $A \models \Sigma$ is known to be algorithmic (besides a few known spaces A where $A \models \Sigma$ iff Σ is essentially trivial).

E.g. it remains unknown whether $[0,1] \models \Sigma$ is algorithmic.

Similarly, recursive enumerability remains unavailable.
Recall that $\mathbb{R} \models \Sigma$ is not a recursive (algorithmic) property of finite Σ.

In fact there is no space A for which $A \models \Sigma$ is known to be algorithmic (besides a few known spaces A where $A \models \Sigma$ iff Σ is essentially trivial).

E.g. it remains unknown whether $[0, 1] \models \Sigma$ is algorithmic.

Similarly, recursive enumerability remains unavailable.

... Looking at λ, we gain traction →
Recursive enumeration of approximate satisfaction.

We fix a list of operation symbols $F_i \ (i \in \omega)$, which includes each arity infinitely often. Clearly every finite set of equations is definitionally equivalent to a finite set involving only the operation symbols F_i.
Recursive enumeration of approximate satisfaction.

We fix a list of operation symbols $F_i \ (i \in \omega)$, which includes each arity infinitely often. Clearly every finite set of equations is definitionally equivalent to a finite set involving only the operation symbols F_i.

Theorem

Let K be a finite simplicial complex, with $|K|$ its geometric realization (as a topological space), and let $\alpha > 0$ be a computable real number. There is an algorithm $A_{K,\alpha}$ whose output consists of those finite sets Σ of equations in $F_i \ (i \in \omega)$ for which $\lambda(|K|, \Sigma) < \alpha$.
Informal description of the algorithm $A_{K,\alpha}$.

Fix for the moment a single finite Σ, for simplicity having a single operation F_0, which is p-ary, while also fixing $M, N \in \omega^+$. We consider the complexes $C = (K^p)^{(M)}$ and $D = K^{(N)}$, where (M) denotes the M-th subdivided complex. And let us consider the case where α is rational.
Informal description of the algorithm $A_{K,\alpha}$.

Fix for the moment a single finite Σ, for simplicity having a single operation F_0, which is p-ary, while also fixing $M, N \in \omega^+$. We consider the complexes $C = (K^p)^{(M)}$ and $D = K^{(N)}$, where (M) denotes the M-th subdivided complex. And let us consider the case where α is rational.

For each simplicial map $C \rightarrow D$ (of which there are finitely many), we may check whether the corresponding continuous map, let us call it $\overline{F}_0: |K|^p \rightarrow K$, satisfies Σ within $< \alpha$. In fact this proposition lies in the first-order theory of reals (using barycentric co-ordinates), and so Tarski’s algorithm will yield an algorithm to check this.
In case we discover a simplicial map satisfying Σ within α, we allow this fragment of the algorithm $A_{K,\alpha}$ to output Σ.
In case we discover a simplicial map satisfying Σ within α, we allow this fragment of the algorithm $A_{K,\alpha}$ to output Σ. The Simplicial Approximation Theorem ultimately says that if $A \models _{\beta} \Sigma$ for some $\beta < \alpha$, then one of these simplicial maps will in fact satisfy Σ within α. Therefore if we loop the above subroutine through all M, all N, and all appropriate simplicial maps, we will sooner or later output Σ if and only if $A \models _{\alpha} \Sigma$. All that remains is to consider all Σ. By a suitable interlacing, we may run the above process concurrently for all of them, thereby yielding an algorithm that outputs exactly those Σ with $A \models _{\alpha} \Sigma$. This completes our description of $A_{K,\alpha}$.
In case we discover a simplicial map satisfying Σ within α, we allow this fragment of the algorithm $A_{K,\alpha}$ to output Σ.

The Simplicial Approximation Theorem ultimately says that if $A \models_\beta \Sigma$ for some $\beta < \alpha$, then one of these simplicial maps will in fact satisfy Σ within α. Therefore if we loop the above subroutine through all M, all N, and all appropriate simplicial maps, we will sooner or later output Σ if and only if $A \models_\alpha \Sigma$.

All that remains is to consider all Σ. By a suitable interlacing, we may run the above process concurrently for all of them, thereby yielding an algorithm that outputs exactly those Σ with $A \models_\alpha \Sigma$. This completes our description of $A_{K,\alpha}$.
An algorithm related to $\lambda(|K|, \Sigma) = 0$.

Corollary

There is an algorithm F that takes no input, and whose output is an infinite stream of triples (K, Σ, s), with each K a finite complex, with each Σ a finite set of equations in the symbols F_i ($i \in \omega$), and with each $s \in \mathbb{Z}^+$; such that the following condition holds: arbitrary K and Σ satisfy $\lambda(|K|, \Sigma) = 0$ iff (K, Σ, s) occurs in the output stream of F for arbitrarily large s.

Proof. Interlace the algorithms $A_{K, 1/s}$ for $s = 1, 2, 3, \ldots$, and for all finite K. When $A_{K, 1/s}$ outputs Σ, then F will output (K, Σ, s).

An algorithm related to \(\lambda(|K|, \Sigma) = 0 \).

Corollary

There is an algorithm \(\mathcal{F} \) that takes no input, and whose output is an infinite stream of triples \((K, \Sigma, s)\), with each \(K \) a finite complex, with each \(\Sigma \) a finite set of equations in the symbols \(F_i \) \((i \in \omega)\), and with each \(s \in \mathbb{Z}^+ \); such that the following condition holds: arbitrary \(K \) and \(\Sigma \) satisfy \(\lambda(|K|, \Sigma) = 0 \) iff \((K, \Sigma, s)\) occurs in the output stream of \(\mathcal{F}_K \) for arbitrarily large \(s \).

Proof.

Interlace the algorithms \(\mathcal{A}_{K,1/s} \) for \(s = 1, 2, 3, \cdots \), and for all finite \(K \). When \(\mathcal{A}_{K,1/s} \) outputs \(\Sigma \), then \(\mathcal{F} \) will output \((K, \Sigma, s)\). \(\square \)
Arithmetical character of $K \models \Sigma$, $\lambda(|K|, \Sigma) = 0$ and $\mu_n(|K|, \Sigma) = 0$.

The above corollary is tantamount to saying that the set of all Σ with $\lambda(|K|, \Sigma) = 0$ is Π^0_2 in the arithmetical hierarchy.
Arithmetical character of $K \models \Sigma$, $\lambda(|K|, \Sigma) = 0$ and $\mu_n(|K|, \Sigma) = 0$.

The above corollary is tantamount to saying that the set of all Σ with $\lambda(|K|, \Sigma) = 0$ is Π^0_2 in the arithmetical hierarchy.

Note that we do not have such a result for $|K| \models \Sigma$. Nor do we know how to obtain such a result for $\mu_n(|K|, \Sigma) = 0$. The problem here would be that the validity of $|K| \models^e_n \Sigma$ requires some operations on $|K|$ that exactly model Σ. And clearly simplicial maps will not generally satisfy Σ exactly. (Example: groups on S^1).