GAUSS’S LEMMA

An element \(a \) of a ring \(R \) is irreducible if it is not a unit and whenever \(a = bc \) either \(b \) or \(c \) is a unit. We are interested in the irreducible elements in \(R[x] \) primarily when \(R = \mathbb{Z} \) or is a field.

Example 1. \(2x + 6 \) is not irreducible in \(\mathbb{Z}[x] \) since \(2x + 6 = 2(x + 3) \) and neither \(2 \) nor \(x + 3 \) are units in \(\mathbb{Z}[x] \). On the other hand \(2x + 6 \) is irreducible in \(\mathbb{Q}[x] \).

Let \(f(x) \in \mathbb{Z}[x] \) be

\[
f(x) = a_m x^m + a_{m-1} x^{m-1} + \cdots + a_1 x + a_0
\]

The content of \(f(x) \) is the gcd of \(a_0, a_1, \ldots, a_m \). \(f(x) \) is said to be primitive if its content is 1.

Theorem 2 (Gauss’s Lemma). If \(f(x) \) and \(g(x) \) are primitive polynomials in \(\mathbb{Z}[x] \) then \(f(x)g(x) \) is primitive.

Proof. Let \(f(x) \) be as above and let

\[
g(x) = b_n x^n + b_{n-1} x^{n-1} + \cdots + b_1 x + b_0
\]

Suppose that \(p \) is a prime dividing the coefficients of \(f(x)g(x) \). Let \(r \) be the smallest integer such that \(p \) does not divide \(a_r \) and \(s \) be the smallest integer such that \(p \) does not divide \(b_s \). (These exist since \(f(x) \) and \(g(x) \) are primitive.) The coefficient of \(x^{r+s} \) in \(f(x)g(x) \) is

\[
c_{r+s} = a_0 b_{r+s} + a_1 b_{r+s-1} + \cdots + a_{r+s-1} b_1 + a_{r+s} b_0.
\]

Since \(p \) divides \(a_0, \ldots, a_{r-1} \) and \(b_0, \ldots, b_{s-1} \), \(p \) divides every term of \(c_{r+s} \) except for the term \(a_r b_s \). However, since \(p \mid c_{r+s} \), either \(p \) divides \(a_r \) or \(p \) divides \(b_s \). But this is impossible. \(\square \)

Theorem 3. Suppose that \(p(x) \in \mathbb{Z}[x] \) and \(p(x) = f(x)g(x) \), where \(f(x) \) and \(g(x) \) are in \(\mathbb{Q}[x] \). Then \(p(x) = f_1(x)g_1(x) \), where \(f_1(x) \) and \(g_1(x) \) are in \(\mathbb{Z}[x] \). Furthermore, \(\deg f(x) = \deg f_1(x) \) and \(\deg g(x) = \deg g_1(x) \).

Proof. Let \(a \) and \(b \) be nonzero elements of \(\mathbb{Z} \) such that \(af(x), bg(x) \) are in \(\mathbb{Z}[x] \). We can find \(a_1, b_2 \in \mathbb{Z} \) such that \(af(x) = a_1 f_1(x) \) and \(bg(x) = b_1 g_1(x) \), where \(f_1(x) \) and \(g_1(x) \) are primitive polynomials in \(D[x] \). Therefore, \(abp(x) = (a_1 f_1(x))(b_1 g_1(x)) \). Since \(f_1(x) \) and \(g_1(x) \) are primitive polynomials, it must be the case that \(ab \mid a_1 b_1 \) by Gauss’s
Lemma. Thus there exists a $c \in \mathbb{Z}$ such that $p(x) = cf_1(x)g_1(x)$. Clearly, $\deg f(x) = \deg f_1(x)$ and $\deg g(x) = \deg g_1(x)$.

Theorem 4 (Eisenstein’s Criterion). Let p be a prime and suppose that

$$f(x) = a_nx^n + \cdots + a_0 \in \mathbb{Z}[x].$$

If $p \mid a_i$ for $i = 0, 1, \ldots, n - 1$, but $p \nmid a_n$ and $p^2 \nmid a_0$, then $f(x)$ is irreducible over \mathbb{Q}.

Proof. By Gauss’s Lemma, we need only show that $f(x)$ does not factor into polynomials of lower degree in $\mathbb{Z}[x]$. Let

$$f(x) = (b_rx^r + \cdots + b_0)(c_sx^s + \cdots + c_0)$$

be a factorization in $\mathbb{Z}[x]$, with b_r and c_s not equal to zero and $r, s < n$. Since p^2 does not divide $a_0 = b_0c_0$, either b_0 or c_0 is not divisible by p. Suppose that $p \nmid b_0$. Then $p \mid c_0$ since p does divide a_0. Now since $p \mid a_n$ and $a_n = b_rc_s$, neither b_r nor c_s is divisible by p. Let m be the smallest value of k such that $p \nmid c_k$. Then

$$a_m = b_0c_m + b_1c_{m-1} + \cdots + b_mc_0$$

is not divisible by p, since each term on the right-hand side of the equation is divisible by p except for b_0c_m. Therefore, $m = n$ since a_i is divisible by p for $m < n$. Hence, $f(x)$ cannot be factored into polynomials of lower degree and therefore must be irreducible. \qed