MATH 412 HW 10

BILLY BOB

1. Let G be a group. The *center* of G, denoted Z(G), is defined by

$$Z(G) = \{ z \in G : zx = xz \text{ for all } x \in G \}$$

In words, the center is the set of elements of G that commute with every element of G. Prove that Z(G) is a normal subgroup of G. (If you got this right on the quiz, you can skip this problem.)

Solution:

2. Let G be an abelian group and let T be the set of elements of finite order. Show that T is a subgroup of G.

Solution:

3. Let G be a group and let a and $b \in G$. Show that if $ab \in Z(G)$ then $ba \in Z(G)$.

Solution:

4. Let U_n be the units of \mathbb{Z}_n . Show that U_5 and U_{10} are both isomorphic to a cyclic group of order 4.

Solution:

5. Let H be a subgroup of a group G and let $a \in G$. Show that aHa^{-1} is also a subgroup of G and that H and aHa^{-1} are isomorphic.

Solution:

6. Find the order of σ^{100} , where σ is the permutation

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 7 & 8 & 9 & 4 & 5 & 2 & 1 & 6
\end{pmatrix}.$$

Hint: Write σ as a product of disjoint cycles.

Solution: