MATH 413 HW 14

BILLY BOB

1. Suppose p and q are distinct primes. Show there is no simple group of order $p^{2} q$.

Solution:

2. Let H be a normal subgroup of order p^{k} in a finite group G. Show that H is contained in every Sylow- p subgroup. Hint: use the second Sylow theorem and the fact (that was proved in class) that every subgroup of order p^{k} is contained in some Sylow-p subgroup.

Solution:

3. Let P be a Sylow- p subgroup of a finite group G. Prove that $N(N(P))=N(P)$.

Solution:

4. Suppose $p<q<r$ are primes and $|G|=p q r$. Show that G is not simple. More is true: the Sylow- r subgroup must be normal. This is pretty hard so I will give you extra credit bonus points if you can prove this.

Solution:

5. Suppose p and q are distinct primes. Show there is no simple group of order $p^{2} q^{2}$.

Solution:

6. The groups of order less that 110 to which none of the above nor the $p^{3} q$ result I proved in class shows that a group of that order cannot be simple are: $72=2^{3} \cdot 3^{2}, 80=2^{4} \cdot 5,84=2^{2} \cdot 3 \cdot 7$, $90=2 \cdot 3^{2} \cdot 5,96=2^{5} \cdot 3$, and $108=2^{2} \cdot 3^{3}$. Show that there is no simple group of any of these orders.

Solution:

7. Let G be a group of order 60 which has a normal Sylow 3subgroup. Prove that G also has a normal Sylow 5 -group. This is \#16 from section 9.3 It is the one I didn't see an easy, "B"
level, solution to. If you can find an easy solution I would love to see it. But if you don't you can just skip it.

Here is an outline of my harder solution: let N be the normal subgroup of order 3 and H a subgroup of order 5 . Since N is normal, $T:=N H$ is a subgroup of order 15. Its index is 4 so by theorem in the Actions handout, there is a homomorphism $\varphi: G \rightarrow S_{4}$ with $\varphi(G)$ being a subgroup of S_{4}. Let K be the kernel of φ. Since any element of G not in T then $\varphi(g)=g T \neq$ T, g is not in K. So $K \subseteq T$. So $|K| \leq 15$. Since S_{4} has no elements of order $5, H \subseteq K$. It follow (actually from Sylow) that $H \unlhd K$. But normal Sylow subgroups are characteristic (invariant under all automorphisms). So
H char $K \unlhd G$
So $H \unlhd G$.

