MATH 412 HW 2: August 29, 2015

BILLY BOB

*1. Let a and $b \in \mathbb{Z}$ with b > 0. If

$$a = bq + r, \quad 0 \le r < b,$$

then gcd(a, b) = gcd(b, r).

Solution:

2. a. Show that if a and b are integers satisfying $a^2 = 2b^2$ then a = b = 0. **Hint:** Use the Fundamental Theorem of Arithmetic.

Solution:

b. Show that $\sqrt{2}$ is irrational.

Solution:

3. Let p and q be primes such that $p \geq 5$ and $q \geq 5$. Show that

$$24 \mid (p^2 - q^2).$$

This problem is a bit hard. If you can't do it, try to show that $12 \mid (p^2 - q^2)$ and I'll give you partial credit.

Solution: