MATH 412 HW 2: August 29, 2015

BILLY BOB

*1. Let a and $b \in \mathbb{Z}$ with $b>0$. If

$$
a=b q+r, \quad 0 \leq r<b
$$

then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Solution:

2. a. Show that if a and b are integers satisfying $a^{2}=2 b^{2}$ then $a=b=0$. Hint: Use the Fundamental Theorem of Arithmetic.

Solution:
b. Show that $\sqrt{2}$ is irrational.

Solution:

3. Let p and q be primes such that $p \geq 5$ and $q \geq 5$. Show that

$$
24 \mid\left(p^{2}-q^{2}\right)
$$

This problem is a bit hard. If you can't do it, try to show that $12 \mid\left(p^{2}-q^{2}\right)$ and I'll give you partial credit.

Solution:

