MATH 412 HW 3: September 7, 2015

BILLY BOB

1. Let $d \in \mathbb{Z}$ be square-free. This means there is no element a > 1 in \mathbb{Z} such that $a^2 \mid d$. So d is square-free if and only if it is a product of distinct primes. Consider the ring

$$R = \mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\}.$$

Define the norm of an element by

$$N(a + b\sqrt{d}) = (a + b\sqrt{d})(a - b\sqrt{d}) = a^2 - b^2d.$$

- **a.** Show that if α and $\beta \in R$, then $N(\alpha\beta) = N(\alpha)N(\beta)$.
- *b. Show that if $u \in R$ is a unit if and only if $N(u) = \pm 1$.
 - **c.** Show that when d = -1, R has exactly 4 units.
- **d.** Show that when d < -1, R has exactly 2 units.
- **e.** Show that if d=3 then there are infinitely many units in R. **Hint:** if u is a unit then u^k is also a unit for all $k \in \mathbb{Z}$.

Solution:

- **2.** Let R be a ring.
 - **a.** Let $a \in R$. Suppose that a is not a zero divisor. Show that cancellation holds for a; that is, show that if ab = ac then b = c.
 - **b.** Show that if a is not a zero divisor and $ab = 1_R$ for some element $b \in R$, then $ba = 1_R$.

Solution:

3. Let $R = \{0, 1, a, b\}$ be a ring where a and b are units. Find the multiplication table of R. In other words find what the four ?'s should be. Give your reasons.

Also find the addition table for this ring.

2 BILLY BOB

Solution: