1. Factor each of the following polynomials in \(\mathbb{Q}[x] \) into irreducibles.
 a. \(x^5 + 4x^4 + x^3 - x^2 \)
 Solution:
 b. \(2x^4 - 5x^3 + 3x^2 + 4x - 6 \)
 Solution:
 c. \(x^5 - 4x + 22 \)
 Solution:

2. Show that \(30x^n - 91 \), where \(n > 1 \), has no roots in \(\mathbb{Q} \).
 Solution:

3. a. Let \(F \) be a field, \(f(x) \in F[x] \) and \(c \in F \). Show that if \(f(x + c) \) is irreducible in \(F[x] \) then \(f(x) \) is irreducible in \(F[x] \). Hint: Prove the contrapositive.
 Solution:
 b. Show \(f(x) = x^4 + 4x + 1 \) is irreducible in \(\mathbb{Q}[x] \) by showing \(f(x + 1) \) is irreducible.
 Solution: