MATH 412 HW 6

BILLY BOB

1. Let S be a ring containing \mathbb{Z}_{6} as a subring. Show that the polynomial $3 x^{2}+1 \in \mathbb{Z}_{6}[x]$ has no roots in S.

Solution:

2. Show that $9 x^{4}+4 x^{3}-3 x+7$ is irreducible in $\mathbb{Q}[x]$ by finding a prime p such that it is irreducible in $\mathbb{Z}_{p}[x]$.

Solution:

3. Show that the set of nonunits in \mathbb{Z}_{8} is an ideal of \mathbb{Z}_{8} but the set of nonunits in \mathbb{Z}_{6} is not an ideal of \mathbb{Z}_{6}. For which n do you think the nonunits of \mathbb{Z}_{n} are an ideal? Just make a guess-you do not need to prove it.

Solution:

4. Let I and J be ideals of a ring R.
a. Show that $I \cap J$ is an ideal of R.

Solution:

b. Let $I+J=\{a+b: a \in I, b \in J\}$. Show that $I+J$ is an ideal of R.

Solution:
c. Let $d=\operatorname{gcd}(a, b)$ in \mathbb{Z}. Show that $(a)+(b)=(d)$.

Solution:

